
A Distributed Certificate Management System (DCMS) Supporting Group-
based Access Controls

Rolf Oppliger Andreas Greulich Peter Trachsel
Swiss Federal Strategy Unit for Information Technology FSUIT

Monbijoustrasse 74, CH-3003 Berne, Switzerland
{rolf.oppliger,andreas.greulich,peter.trachsel}@isb.admin.ch

Abstract

Mainly for scalability reasons, many cryptographic se-
curity protocols make use of public key cryptography and
require the existence of a corresponding public key infra-
structure (PKI). A PKI, in turn, consists of one or several
certification authorities (CAs) that issue and revoke certifi-
cates for users and other CAs. Contrary to its conceptual
simplicity, the establishment and operational maintenance
of a CA or PKI has turned out to be difficult in practice. As
a viable alternative, this paper proposes an architecture for
a distributed certificate management system (DCMS) that
can also be used to provide support for group-based access
controls. The architecture has been prototyped and is being
used by the Swiss Federal Strategy Unit for Information
Technology (FSUIT) to protect access to intranet re-
sources.

1 Introduction
Network security is a hot topic today. Access control

services are usually provided through the use of firewalls,
whereas communication security services are usually pro-
vided through the use of cryptographic security protocols
that work at the Internet, transport, and/or application layer
of the TCP/IP communications protocol suite [1,2]. Mainly
for scalability reasons, many of the cryptographic security
protocols make use of public key cryptography and require
the existence of a corresponding public key infrastructure
(PKI). A PKI, in turn, consists of one or several certifica-
tion authorities (CAs) that issue and revoke certificates for
users or other CAs. The CAs may be organized in many
ways, including, for example, a hierarchy or a decentralized
web of trust (making heavy use of cross-certificates).

Since the term "certificate" was first used by Loren M.
Kohnfelder to refer to a digitally signed record holding a
name and a public key [3], it has been assumed that the only
purpose of a certificate is to bind a public key to a globally
unique name. In fact, this assumption has led to the design
of several PKIs on top of existing naming schemes and di-
rectory services, such as provided by the ITU-T recommen-
dations of the X.500 series. However, the singular use of

the term "certificate" has recently been challenged with the
use and proliferation of attribute certificates within the
Internet community [4,5]. Unfortunately, standardization is
far away from coming up with a commonly agreed and
widely deployed format for attribute certificates, and the
use of attribute certificates on a large scale and across ap-
plications is still not possible today (this will probably
change when attribute certificates become widely deployed
on the Internet).

Due to the singular use of the term "certificate" in the se-
curity community, there is still considerable confusion on
how to build a PKI. For example, the Internet Engineering
Task Force (IETF) has tasked a Public Key Infrastructure
X.509 (PKIX) Working Group (WG) to design and build a
PKI for the Internet community based on the ITU-T rec-
ommendation X.509 [6], whereas the Simple PKI (SPKI)
WG has been tasked with producing a certificate structure
and operating procedure to meet the needs of the same
community for trust management in as easy, simple, and
extensible a way as possible. The fear that motivated the
IETF to task two WGs is actually due to the possibility that
the task of building an X.509-based PKI for the Internet
community is too big. Note that the Privacy Enhanced Mail
(PEM) WG failed to build and establish an X.509-based
PKI for secure electronic mail for the Internet community a
couple of years ago [7]. Having a closer look at the two
approaches being followed by the WGs, one actually rec-
ognizes that the main difference between them is the fact
that the IETF PKIX WG assumes the existence of a global
namespace, whereas the IETF SPKI WG does not make this
assumption and starts from linked local namespaces, such
as the ones proposed by Ron Rivest and Butler Lampson in
their Simple Distributed Security Infrastructure (SDSI).
Furthermore, the SDSI/SPKI effort addresses authorization
in addition to authentication (since a PKI that only ad-
dresses authentication isn't very useful for e-commerce ap-
plications). The results of the IETF PKIX and SPKI WGs
and are overviewed and discussed in Chapter 8 of [8]. They
are not further addressed in this paper.

One may reasonably dispute whether an X.509-based
PKI is actually the infrastructure required for the Internet
community and the e-commerce applications that are sup-
posed to take place within the Internet. Anyway, from a

practical (and corporate) point of view, the situation is fun-
damentally different and simpler. Within a corporate envi-
ronment, there typically exists a namespace in which each
employee is not only identified with a unique name, but is
also assigned a unique employee number. Consequently,
there exists a namespace (within the corporate environment)
that can be used to have certificates bind public keys to
unique names. Consequently, ITU-T X.509 provides a use-
ful ground for building a PKI for a corporate environment.
In fact, many organizations follow this approach and estab-
lish X.509-based PKIs to secure their intranet and extranet
connections.

Assuming the existence of an internal (locally unique)
namespace within a corporate environment (which can ei-
ther be a company or an organization), this paper proposes
an architecture for a distributed certificate management
system (DCMS). In addition to manage X.509-based public
key certificates, the DCMS can also be used to provide
support for group-based access controls. As such, the
DCMS addresses authentication and authorization from an
architectural point of view. In short, the aims of the DCMS
are two-fold:
• On the one hand, the DCMS architecture is to provide

a high degree of delegation and decentralization with
regard to the provision of its certification services. The

underlying assumption is that a delegated and decen-
tralized certification service can be provided more ef-
fectively and efficiently than it centralized counterpart
(since existing organizational units, such as the human
resources department, can be used).

• On the other hand, the DCMS architecture is to intro-
duce the notion of a group membership to provide sup-
port for group-based access controls. This is similar to
the use of attribute certificates to facilitate access con-
trols [4,5].

The DCMS architecture has originally been described in
[9]. This paper goes some steps further in refining the ar-
chitecture, elaborating on an existing prototype implemen-
tation called PECAN (an acronym derived from "PErl Cer-
tification Authority Network"), and pointing out some areas
for further study.

The rest of this paper is organized as follows: The
DCMS architecture is introduced and overviewed in Sec-
tion 2. The corresponding prototype implementation is de-
scribed in Section 3, and areas of further study are ad-
dressed in Section 4. Finally, conclusions are drawn in Sec-
tion 5. The paper refers to ongoing work within the Swiss
Federal Strategy Unit for Information Technology (FSUIT).
Consequently, future papers will address the experiences

Figure 1: The architecture of the distributed certificate management system (DCMS)

that are made with the use and deployment of PECAN
within the intranet of the Swiss governmental bodies.

2 DCMS Architecture
The DCMS architecture is illustrated in Figure 1. It basi-

cally consists of three components:
• A DCMS core;
• One or several decentralized DCMS frontends;
• A DCMS database that is maintained by the DCMS

core. Data that are collected at the DCMS frontends are
periodically synchronized, processed by the DCMS
core, and replicated and redistributed to the frontends.

The DCMS core is a standalone application that is oper-
ated by DCMS administrators with corresponding privi-
leges and access rights. In fact, DCMS administration re-
quires some sort of shell access to the underlying operating
system (e.g., UNIX or Windows NT). Contrary to the
DCMS core, the DCMS frontends are provided by "normal"
HTTP or Web servers that are operated by the correspond-
ing system administrators. The DCMS frontends can run
either as normal Web servers or SSL-enabled server-only
authenticated Web servers (which is actually the preferred
configuration). The same DCMS frontend can also run on a
fully operable SSL-enabled Web server (including, for ex-
ample, client authentication), which then allows certain
users, called DCMS agents, to perform specific actions
within the database. In essence, a DCMS agent is a user
who has been granted special privileges with regard to the
verification of user identities or the confirmation of corre-
sponding group memberships. It is up to the DCMS admin-
istrators to nominate users as DCMS agents. In either case,
communications between the DCMS core and the corre-
sponding frontends must be secured with a cryptographic
security protocol, such as the Internet Security Protocol
(IPSP), the Secure Sockets Layer (SSL) or Transport Layer
Security (TLS) protocol, or the Secure Shell (SSH) [1].
Note that the DCMS topology is a star, simplifying the
tasks of key management (for the cryptographically secured
communication between the DCMS core and its frontends)
and database synchronization considerably.

The DCMS architecture is centered around the notion of
a group (to support group-based access controls). In es-
sence, a group is an attribute granted to a certificate to pro-
vide its owner with some specific privileges. Unlike other
proposals, such as attribute certificates, the privileges that
are granted to the certificate owners are not directly en-
coded into the corresponding certificate data structures, but
are stored off-line within a database. The database entries
are then used to link certificates to corresponding group
membership information. This has the advantage of having
certificates in a permanent form, whereas all transient group
membership information are stored and maintained dynami-
cally in the database (where it can be managed more easily).

The list of available groups is determined by the DCMS
administrators and can be changed at will.

With regard to a given group A, a certificate may be in
one of the following states:
• The certificate can be in the "member of A" state. In

this state, the certificate has access privileges related
to group A. Synonymously, one can say that "member-
ship of A is granted" or "issued" to the certificate, or
that the certificate has the "issued" state for A.

• The certificate can be in the "revoked out of A" state.
In this state, membership to group A (and its related
privileges) has been revoked.

• The certificate can be in the "applied for A" state. In
this state, the certificate has been applied for but is not
(yet) a member of group A. Eventually, membership
will be granted or revoked at some later point in time.
Syononymously, one can say that the certificate is in
the "pending" state for A.

• Finally, if a certificate does not belong to any of the
states mentioned above, it is in the "unknown" state for
this particular group A. In this case, no explicit state
has been given yet. Consequently, the certificate has no
access privileges related to group A (the same is true
for the pending and revoked states). A certificate in un-
known state is also said to be "external" (external from
group A's perspective). All other states mentioned
above indicate that a certificate is "internal", meaning
that it has a well-defined state. An external certificate
can become internal with regard to A either by appli-
cation from a user, or by an explicit import operation
performed by a legitimate agent of the group.

As mentioned above, each group is managed by one or
several users who have special privileges (the so-called
DCMS agents). In short, a DCMS agent is a strongly
authenticated (e.g., through the use of SSL client authenti-
cation) user who has the privilege on the DCMS frontends
to modify the states of the certificates for "his groups."
These are all the groups he's a legitimate agent for. Obvi-
ously, a user can be an agent for several groups (all of them
are called "his groups"), and a group can be run by one or
more agents. Consequently, there exists an (n:m)-
relationship between groups and agents (n,m >= 1).

Per definition, DCMS administrators are agents for all
groups. Also, there is a special group called ".". Granting a
certificate access to the "." group actually means that the
identity of the certificate requester has been verified ac-
cording to a specific policy or certification practice state-
ment (CPS). Similar to any other group, the legitimate
agents of the "." group are nominated by the DCMS ad-
ministrators. In the case of the "." group, DCMS agents are
also called validators, meaning that the agents of this group
are authorized to verify the identity of the corresponding
certificate requesters, and to validate the certificates ac-
cordingly. Validation of a certificate implies some policy-
driven procedure, such as placing a phone call to the appli-

cant or appearing in person and showing a photo ID. The
important point to note is that there may be several valida-
tors around. Each validator is authorized to validate any
certificate, no matter if it belongs to one of his groups. Ac-
tually, a validator does not even need to be an agent of any
other group. Also note that each certificate can be subject to
several validations. As soon as a validator V1 validates an
anonymous certificate, it gets the "V1T1" state (T1 refer-
ring to a timestamp for the validation process). But any
validated certificate can be revalidated at any time, possibly
several times. So, if another validator V2 revalidates the
certificate at some later point in time, the validation state
gets the "{V1T1,V2T2}" state (T2 referring to the time-
stamp for the new validation). Consequently, a list of all
validators that validated a certificate can be requested and,
for example, used by an agent in order to determine whether
or not to grant membership to one of his groups. Note,
however, that the monotony property of the validation proc-
ess (meaning that a validation can't be revoked at some later
point in time) is important for the scheme to work. In spite
of the fact that certificates must be able to be revoked, there
is no need to revoke validations (validation revocation
doesn't make sense from a logical point of view).

3 Prototype Implementation
The DCMS architecture described so far has been pro-

totyped and is being used at the Swiss Federal Strategy Unit
for Information Technology (FSUIT) in a software called
PECAN (an acronym derived from "PErl Certification
Authority Network"). The name of the software has been
chosen due to the fact that it's main parts are implemented
with the Perl scripting language.

In the subsections that follow, we address the content of
the databases that are used by PECAN, the database syn-
chronization process, access control lists (ACLs) extraction,
and the corresponding Perl scripts.

3.1 Databases
PECAN uses a Perl-based database management system

(DBMS) called Sprite, but any other SQL-based DBMS
could be used instead. The PECAN software currently
comprises three main databases (a fourth database that in-
cludes the rules that specify how to use the certificates to
control access to intranet resources is not addressed in this
paper):
• The Certificate-DB stores all certificate informa-

tion, including the original request (e.g., in Netscape's
SPKAC format), fields filled in by the user, state of the
internal certificate (pending, issued, or revoked), time-
stamps, and the certificate itself as soon as it is issued.
Also, each new certificate gets a unique identifier (ID),
called the CERTID, which is a letter followed by a 6-
digit number (the letter is unique for each DCMS or

PECAN frontend). Consequently, the format of a Cer-
tificate-DB entry is as follows:

 CERTID Unique certificate ID
 TEL Telephone number of the requester
 CN Common name (CN) of format
 "surname, firstname :SEQ=\d:" (SEQ
 referring to a sequence number)
 CC Country code
 ST State/province information
 OO Organization
 OU Organization unit (suborganization)
 EMAIL Electronic mail address
 TIMECREAT Timestamp of certificate request
 TIMEMOD Timestamp of last modification
 STATUS Certificate status ($PENDING,

$ISSUED, or $REVOKED)
 REQ Original certificate request
 REQFORMAT Format of REQ (e.g., SPKAC

 or PKCS7)
 CERT Certificate (as soon as it is issued)
 CERTFORMAT Format (e.g., X509)
 EXPIRES Expiration date

 Note that the certificate's common name (CN) is
usually sent by the browser and constructed by a
JavaScript code segment. It contains the name entered
by the user, and a sequence number given by the user
(usually set to 1). Sequence numbers allow reissuing
certificates, for example, for certificate renewal or
second browsers. Users with the same CN except its
sequence number are considered to be the same,
whereas certificates with different sequence numbers
are considered to be different. The part of the CN field
up to the first ":" is called the "owner of the certifi-
cate" or "name of the owner of the certificate",
whereas the full CN is called the "name of the certifi-
cate". Consequently, certificates with CN "Greulich,
Andreas :SEQ=1:" and "Greulich, Andreas :SEQ=2:"
have the same owner, but are still considered different
certificates (the first and second certificate). In either
case, the name of the owner is "Greulich, Andreas."

• The Group-DB stores group-related information.
More precisely, each entry in the Group-DB contains
a unique group ID for the group, the name of an agent,
and eventually a group description (only one entry may
contain a group description). As such, the Group-DB
also stores validators and DCMS administrators; vali-
dators being agents of the group ".", and DCMS ad-
ministrators being agents of the group "CA". The en-
tries of the Group-DB can only be modified by DCMS
administrators by direct writing to the core Group-
DB. The format of a Group-DB entry is as follows:
 GROUPID Unique group ID

 OWNER Name of an agent for the group
 DESC Description of the group

 Note that several entries with the same GROUPID
may exist, but only one should have a non-empty
DESC field. The OWNER field contains the name of
the owner of authorized certificates, so entering
"Greulich, Andreas" as owner labels all certificates of
the form "Greulich, Andreas :....:" as being agents for
this particular group (validators for the "." group and
administrators for the "CA" group). In this case, the
colon is just a separator that is discarded (simply to
avoid having to modify the database when certificates
are renewed). Finally, note that each GROU-
PID/OWNER pair is unique and must appear only
once in the entire database.

• The Memberships-DB links the other two databases
(the Certificate-DB and Group-DB). As such,
each entry is keyed with a CERTID and a GROUPID,
and provides state information for the certificate (iden-
tified with CERTID) with regard to the corresponding
group (identified with GROUPID). A certificate can
either be internal or external, in the former case being
either in the pending, issued or revoked state. There
might be only one entry for a given CERTID and
GROUPID, except when the GROUPID is ".", as there
may be several validators for a certificate. The Mem-
berships-DB is readable by anybody, and anybody
may also append to it because each new certificate re-
quest automatically generates pending memberships for
all groups a user selected, plus one "pending" member-
ship for group "." indicating the certificate is not yet
validated. Only SSL-authenticated agents, validators
and DCMS administrators may modify entries belong-
ing to "their" (and only their) groups. The format of an
entry in the Memberships-DB is as follows
 CERTID Link to the Certificates-DB

 GROUPID Link to the Group-DB
 STATUS Certificate status
 BY Name of the person who created

or modified the database entry
 TIMEMOD Time of the creation or modification
When a user requests a certificate from a DCMS or PE-

CAN frontend, the following steps are usually performed:
1. A Certificate-DB entry is created with a unique

CERTID, containing all fields, except CERT and EX-
PIRED. The value of the STATUS field is set to
$PENDING (meaning that the certificate is in pending
state).

2. A Memberships-DB entry is created with a
GROUPID value set to "." and a STATUS value set to
$PENDING (meaning that the certificate requester is
waiting to be validated).

3. For each group the certificate requester selected, a
corresponding entry with status value set to $PEND-
ING is created in the Memberships-DB (meaning
that the certificate requester is waiting to be granted
membership to specific groups). Note that steps 2 and

3 are not fundamentally different, since "." can also be
seen as a special group.

A special case occurs if the connection of the certificate
request was mutually authenticated between the user and a
PECAN frontend (through the use of SSL with client
authentication). In this case, the user has already been is-
sued a certificate at some earlier point in time. All valida-
tions and granted group memberships that have been
granted to the non-revoked certificates of the requester are
automatically inherited. For example, if the owner "Greu-
lich, Andreas" of the certificate "Greulich, Andreas
:SEQ=2:" with CERTID "A111111" requests a new certifi-
cate "Greulich, Andreas :SEQ=3:" (with CERTID
"A222222") using an SSL-authenticated access, demanding
membership to groups A and B, while "Greulich, Andreas
:SEQ=2:" is already a member of A (but external to B), the
generated certificate automatically inherits its $ISSUED
state for group A. The fields of the corresponding entry in
the Memberships-DB are initialized to the following
values:

 CERTID A222222
 GROUPID A
 STATUS $ISSUED
 BY INHERIT-A111111
 TIMEMOD ...
If more than one non-revoked certificate with a matching

owner name exist (such as "Greulich, Andreas :SEQ=1:"
with CERTID "A100000"), multiple inheritance may hap-
pen ($ISSUED memberships are inherited, whereas $RE-
VOKED memberships are ignored). So, if "Greulich, An-
dreas :SEQ=1" is issued, but "Greulich, Andreas :SEQ=2"
revoked, the issued state is inherited. For obvious reasons,
revoked certificates must not be considered for inheritance.
In the example given above, "BY" would be set to "IN-
HERIT-A111111-A100000."

The inheritance mechanism should make certificate re-
newal easier, as group memberships need not be regranted
by the corresponding agents. Note, however, that this sub-
ject is still under investigation, and that security inconsis-
tencies can't be excluded at this point in time.

3.2 Database Synchronization
From time to time, the Certificate-DB and Mem-

berships-DB must be synchronized among the various
frontends and the core (note that the Group-DB is stable
and must not be synchronized). The synchronization proc-
ess can happen on a regular basis (for example, twice a day)
or on an administrator's request. In the PECAN implemen-
tation, database synchronization is performed using the
SSH scp tool to securely copy the frontend Certifi-
cate- and Memberships-DBs to the core, where they
are synchronized as follows:

1. The new entries in the frontend Certificate-DBs
are added to the corresponding core Certificate-
DB.

2. The entries in the frontend Memberships-DBs for a
particular CERTID/GROUPID pair that appear in more
than one DB (core plus all frontend DBs) are sorted
chronologically, and the most recent one is chosen. For
each entry it is then checked if the BY field matches an
agent in the appropriate Group-DB. BY fields starting
with INHERIT and AUTO are just taken for granted
("AUTO" is only added to allow importing or therwise
issued certificates).

3. The log files from all frontend DBs are collected into a
central logfile. Any intrusion detection algorithm
would be applied to this central logfile (intrusion de-
tection algorithms have not been implemented so far).

After the synchronization process, the new core DBs are
replicated and redistributed to the frontends. In addition, a
certificate-signing procedure can be started at this point in
time. The corresponding script operates on the core DB
only and performs the following actions: All certificates in
issued state (meaning that their STATUS field is set to $IS-
SUED) that are validated (i.e., they have at least one "."
membership granted) and have all their memberships in
issued state are considered as candidates. Their requests
plus a list of all candidates is extracted and shown for ac-
knowledgment to an administrator. If the administrator
gives his acknowledgment, all certificate candidates are
signed in one step. Obviously, this interactive step must be
skipped if the certificate-signing procedure is run in batch
mode. In either case, the resulting certificates are put into
the appropriate fields in the Certificate-DB.

3.3 Access Control Lists Extraction
To support group-based access controls, PECAN can

also be used to extract access control lists (ACLs) from its
databases (using a Perl script called acls.pl). More spe-
cifically, for each group A, a file A.acl can be extracted
that contains the CN fields of all issued certificates with
granted membership to this group (multiple certificates that
belong to the same user will appear several times). For ex-
ample, a file A.acl may look as follows (specifying two
users):

 Greulich, Andreas :SEQ=1:
 Oppliger, Rolf :SEQ=3:
 Oppliger, Rolf :SEQ=4:
Such a file is suitable for Stronghold's SSL_Require

directive. Something like the following script may work in
Stronghold's (and other Web server's) HTTPD configura-
tion file (httpd.conf):
<VirtualHost *:1943>
SSLFlag on
SSLVerifyClient 2
<Location>
SSL_Group A

 "cn INFILE /opt/WWW/ACLs/A.acl"
SSL_Require 'A'
ErrorDocument 403 "Your certificate is
 not member of the A group. To
 join it, please contact Mr. X."

</Location>
ProxyPass / http://A.bfi.admin.ch/
...
</VirtualHost>

Furthermore, a certificate revocation list (CRL) can be
extracted and used in a similar directive.

3.4 PERL Scripts
As mentioned above, PECAN is currently implemented

as a set of several Perl scripts:
• The script CA.cgi implements the PECAN frontend

(the user interface);
• The script sync.pl implements the synchronization

procedure mentioned above;
• The script sign.pl implements the signing procedure

mentioned above;
• The script acls.pl implements the ACL extraction

process mentioned above;
• The script index.pl is used for backward compati-

bility. It reads in SSLeay-style index.txt for "old"
certificates, automatically validates them, and adapts
memberships specified as attributes in the CN field
(meaning that "Greulich, Andreas :SEQ=1:A:B:"
automatically gets memberships to A and B). BY-
fields are put to "AUTO";

• The script importOldCerts.pl scans trough di-
rectories containing ".pem" files and adding their cer-
tificates into the core DB, if latter contains issued cer-
tificates without certificate data whose CN fields
match. This script is usually used together with in-
dex.pl to include old certificates to the core DB.

4 Areas of Further Study
Obviously, the most important component of the DCMS

architecture is the signing key that is required to issue digi-
tally signed public key certificates. In one way or another,
the DCMS administrator must have access to this key, and
this access must be controlled accordingly. The key is ei-
ther stored in the DCMS core and protected accordingly
(e.g., encrypted with a key derived from a password or pass
phrase that is known only to DCMS administrators), or it is
provided by a DCMS administrator for temporary use (e.g.,
using smartcard technologies). In practice, the first option is
preferred if the process of issuing digital certificate must be
automated and included into a batch processing file. In gen-
eral, however, it is less secure than the second option. In
this case, it is up to the DCMS administrator to secure the
key, and to provide it to the DCMS core whenever needed.

With regard to protecting the private signing key, one
could think of using secret sharing or group signature
schemes:
• In a secret sharing scheme, a secret (such as a private

signing key) can be shared among many users (or
DCMS administrators) in such a way that any qualified
group of users can reconstruct the secret, but any un-
qualified group of users have absolutely no information
about the secret (in the case of a perfect secret sharing
scheme). This concept was first proposed in [10,11],
and has been subject to a lot of cryptographic research
and development meanwhile.

• In a group signature scheme, a digital signature can
only be computed if a qualified group of users and
holders of corresponding secrets) cooperate. More pre-
cisely, each user (or DCMS administrator) holds a
signing key that allows him to compute a partial signa-
ture for a certificate. All partial signatures together
constitute the signature for the certificate [12].

Note that using secret sharing or group signature
schemes is equally useful in centralized and decentralized
(and distributed) certificate management systems. It is as-
sumed that the problem of protecting private signing keys
for generating certificates will become more important in
the future.

As of this writing, the database synchronization scheme
used in the prototype implementation is fairly simple. In
fact, database synchronization must be initiated by a DCMS
administrator (e.g., twice a day). In large domains, it may
be required that databases are resynchronized periodically.
Ideally, database resychrnonization is made a permanent
task that is performed in the background. Any database
replication and synchronization technique can be used.
Note, however, that the star topology of the DCMS should
be taken into account when optimizing the corresponding
database replication and synchronization schemes. Due to
the star topology, the DCMS frontends need not be syn-
chronized among each other.

In this paper, the DCMS architecture has been described
for a corporate environment (for example, an intranet set-
ting). In practice, the situation is much more complicate
with groups including members of several companies and
organizations. Consequently, issues related to cross-
organization and inter-domain DCMS will be important in
the future. For example, how can DCMS administrators
cooperate across organizational borders, and how can
agents do the same? These questions are left for further
study. Similarly, the question of how to efficiently revoke
public key certificates is addressed in [8] and not further
elaborated in this paper.

Finally, a field that is left for further study is related to
the granularity of group membership. Note that in this pa-
per, group membership has always implied that a user (who
has been granted group membership) has obtained privi-
leges with regard to this group. Consequently, group mem-

bership is a boolean value (either group membership is
granted or not). This granularity may not be sufficient for
real-world access controls, where a user can be a member of
group and have several roles within this group (e.g., leader,
moderator, secretary, ...). Against this background, one can
reasonably assume that applying role-based access control
models to the DCMS architecture will lead to new insights
that can be used to further refine the DCMS architecture
and its application for access controls. This approach may
actually lead to a group- and role based access control
model [13].

5 Conclusions
To overcome the problems related to build and operate a

scalable public key infrastructure (PKI), this paper pro-
posed an architecture for a distributed certificate manage-
ment system (DCMS) that can also be used for group-based
access controls. In short, the DCMS consists of three com-
ponents: a DCMS core, one or several DCMS frontends,
and several databases that are periodically synchronized
with a core database. The DCMS core is operated by ad-
ministrators with corresponding privileges, whereas the
DCMS frontends are operated by agents that have the
privileges to either verify the identity of requesting users, or
to confirm their memberships to specific groups. Conse-
quently, the operational task of running a CA or PKI is dis-
tributed among severalpeople, each of them responsible
only for specific tasks.

Meanwhile, the DCMS architecture has also been pro-
totyped and is being used by the IT Security Group of the
Swiss Federal Strategy Unit for Information Technology
(FSUIT). The corresponding prototype implementation is
called PECAN (PErl Certification Authority Network). It
consists of a database system and several Perl scripts. Expe-
rience has shown that a distributed approach to managing
certificates in a corporate environments offers many ad-
vantages with regard to the scalability of the resulting solu-
tion.

References
[1] R. Oppliger, Internet and Intranet Security. Artech House

Publishers, Norwood, MA, 1998
[2] R. Oppliger, Authentication Systems for Secure Networks.

Artech House Publishers, Norwood, MA, 1996
[3] L.M. Kohnfelder, Towards a Practical Public-key Cryptosy-

stem, MIT S.B. Thesis, May 1978
[4] R. Oppliger, G. Pernul, and C. Strauss. Using Attribute Certi-

ficates to Implement Role-based Authorization, submitted
for publication

[5] R. Oppliger, Authorization Methods for E-Commerce Appli-
cations. Proceedings of the International Workshop on
Electronic Commerce held in conjunction with the 18th
IEEE International Symposium on Reliable Distributed Sy-
stems (SRDS '99), Lausanne (Switzerland), October 19 - 22,
1999

[6] ITU-T Recommendation X.509: The Directory - Authenticati-
on Framework, 1988

[7] S.T. Kent, Internet Privacy Enhanced Mail, Communications
of the ACM, Vol. 36, No. 8, August 1993, pp. 48-60

[8] R. Oppliger, Security Technologies for the World Wide Web.
Artech House Publishers, Norwood, MA, 1999

[9] R. Oppliger, A. Greulich, and P. Trachsel. Der Einsatz eines
verteilten Zertifikat-Managementsystems in der Schweizeri-
schen Bundesverwaltung. Proceedings of the German Infor-
matics Society (GI) Working Conference "Verlaessliche IT-
Systeme" (VIS '99), Essen (Germany), September 22 - 24,
1999

[10] A. Shamir, How to share a secret, Communications of the
ACM, Vol. 22, No. 11, November 1979, pp. 612 - 613

[11] G.R. Blakley, Safeguarding cryptographic keys, Proceedings
of AFIPS 1979 National Computer Conference, pp. 313 -
317

[12] C. Boyd, Some Applications of Multiple Key Ciphers,
Proceedings of Eurocrypt '88, pp. 455 - 467

[13] R.S. Sandhu and E.J. Coyne, Role-Based Access Control
Models, IEEE Computer Magazine, February 1996, pp. 38 -
47

