

How to Address the Secure Platform Problem
for Remote Internet Voting

Rolf Oppliger
eSECURITY Technologies Rolf Oppliger (www.esecurity.ch)

Beethovenstrasse 10, CH-3073 Gümligen
rolf.oppliger@esecurity.ch

1 Abstract
There are many possibilities to implement Internet voting. The casting
of ballots at private sites where the voter (or a third party acting on
behalf of the voter) administers and controls the voting client,
platform, and operating environment is particularly interesting and
challenging. This possibility is commonly referred to as remote
Internet voting. The most important security problem related to
remote Internet voting is the secure platform problem (i.e., the
problem that malicious software may attack and modify the remote
Internet voting client to change the voter’s ballot in some meaningful
way). This paper overviews and discusses some technical
approaches to address the secure platform problem. It concludes that
the combined use of code sheets and test urnes provides a
reasonable approach that can be used to achieve a level of security
that is comparable to other forms of absentee balloting, such as, for
example, voting by postal mail. The open questions related to the use
of code sheets are usability and user acceptance of the modified
voting behavior.

2 Introduction
Elections and votes are at the heart of all democracies. In fact, they
are important bulding blocks and processes for the proper operation
of a democratically legitimated government:

• Elections are used to empower politicians to speak for the people
(i.e., they are used for delegation);

• Votes are used to query the political will of the people (i.e., they
are used to challenge political decisions).

In either case, registered voters must be provided with ballots and
voters must cast their ballots in some defined way.

In the literature, the term electronic voting (e-voting) is used to refer to
elections and votes that are supported by electronic means.
Independent from this term (i.e., e-voting), the idea of using electronic
means to support elections and votes has attracted many people in
the past. For example, in June 1869, Thomas A. Edison received
U.S. patent 90,646 for an „Electric Vote-Recorder“ intended for use in
Congress. Since then, various systems directly or indirectly related to
e-voting have been invented, approved, implemented, partly revised,
or rejected. Some of these systems have been granted patents,1
whereas others have been protected with other means of intellectual
property protection (e.g., trade secrets).

With the deployment and wide proliferation of the Internet, its use for
e-voting has been proposed by many people as a way to make voting
more convenient andas it is hopedto increase participation in
public elections and votes. In this paper, the term Internet voting is
used to refer to any election or voting process that enables voters to
cast their ballots over the Internet in some way or another. This
basically means that the ballots must be represented electronically,
and that the electronic ballots must be transmitted to election officials
using the Internet as a transport medium. For example, in the U.S.
the Arizona Democratic Party used Internet voting in March 2000 for
its Presidential Preference Primary.2 The election involved several
thousands of voters and was an official election in the sense that the
result was binding. The e-voting system, however, was neither public
nor certified by the State of Arizona (since the election was internal to
the Democratic Party). For such a system to be used for public
elections or votes, it would have to be certified by the state where it is
being used. As of this writing, there is no state that has officially
certified such a system.

3 Internet Voting
There are many possibilities to implement Internet voting. For
example, depending on the places where the ballots are casted and
who administers and actually controls the voting clients, platforms,
and operating environments, poll-site Internet voting and remote
Internet voting are usually distinguished.

1 A list of U.S. patents related to e-voting can be found, for example, at

http://www.safevote.com/patents.
2 The company election.com was appointed to conduct the election. Further

information can be found on the company's home page at http://election.com.

• Poll-site Internet voting refers to the casting of ballots inside official
polling places at sites where election officials administer and fully
control the voting clients, platforms, and operating environments.3

• Contrary to that, remote Internet voting refers to the casting of
ballots at private sites (e.g., home, office, school, ...) where the
voter (or a third party acting on behalf of the voter) administers
and controls the the voting client, platform, and operating
environment.

Considering the media attention that has focused on the prospect of
using the Internet to vote, it is not suprising that the terms „Internet
voting“ and „remote Internet voting“ are being used synonymously in
the popular press. As discussed later, however, it makes a lot of
sense to cleanly distinguish between the two terms.

A third possibility offers an intermediate step between poll-site
Internet voting and remote Internet voting.

• Kiosk voting refers to the casting of ballots outside official polling
places at sites that are publicly accessible (e.g., shopping malls,
post offices, libraries, schools, ...). The voting clients and their
platforms are administered and controlled by election officials, but
the operating environments can not be fully controlled by them.
Where necessary and appropriate, however, surveillance and
monitoring technologies may be used to remotely control the
operating environment. Note that kiosk voting is conceptually
similar to the use of automatic teller machines (ATMs) in the
financial industry.4

As discussed below, the three possibilities to implement Internet
voting have specific security properties and implications.

4 Security Requirements
There are many investigations and studies that elaborate on the
security of Internet voting in general, and remote Internet voting in
particular (e.g., [Cal00,IPI01,Rub01]). The results unanimously agree
that security (including privacy and reliability) is among the most

3 In some references (e.g., [Cal00]), a distinction is made between poll-site Internet

voting where a precinct polling place must be used, and poll-site Internet voting
where any official polling place may be used. This distinction is not made in this
paper and both possibilities are collectively referred to as poll-site Internet voting.

4 In this analogy, poll-site Internet voting is conceptually similar to physically visiting a
bank and remote Internet voting is conceptually similar to Internet banking.

important engineering considerations for Internet voting to be
successful in the first place. The current paper ballot systems set a
standard that is adopted as the baseline for Internet voting. They
represent certain tradeoffs between voter convenience and protection
against fraud and abuse. It is generally required that elections and
votes conducted over the Internet are at least as secure as the
current paper ballot systems. If a state allowed voting by postal mail,
however, this mechanism sets the security standard for Internet
voting.

Also, it is essential that an Internet voting system provides some
evidence that it is immune from attacks that could affect the outcome
of an election or vote. It is not sufficient to argue that a specific attack
is unlikely, or even very unlikely, to happen. An election or vote would
be an extremely tempting target for any motivated party (e.g., a
hacker group, group of partisans, foreign government, ...). Such an
attack would be a political and public relations disaster; or worse, if
successful and undetected, compromise the results of the election or
vote. It must be presumed therefore, that if a specific attack is
possible, it will happen sooner or later. Even before anything
happens, people will publicly criticize Internet voting systems that are
subject to specific attacks. There is some risk that the public would
loose confidence and trust in the system (maybe even before
anything happens at all).5

When talking about security, there are several requirements that must
be considered with care. The following list is not intended to be
complete and comprehensive:

• Completeness and soundness of the voting protocol;

• Correctness of the results;

• Authenticity of both the voter (or the voting client acting on behalf
of the voter, respectively) and the voting server;

• Secrecy of the ballots (including, for example, anonymity of the
voter);

• Integrity of the ballots (including, for example, protection against
malicious software6);

5 Note that confidence and trust are properties that are hard and time-consuming to

establish, but they can be lost very rapdily.
6 Malicious software is software that is deliberately designed to do harmful things that

the user neither wants nor expects, and to hide the harmful action or perform it so

• Non-duplication of the ballots;

• Availability and reliability of the voting process (including, for
example, protection against denial-of-service attacks).

Some security requirements are complementary and don't interact
with each other (e.g., integrity and non-duplication of the ballots).
Other security requirements, however, are (or at least seem to be)
contradictory. For example, one way to attest the correctness of a
voting process is auditability, meaning that the entire voting process
can be audited in some reasonable way. Auditability, however,
sometimes also contradicts to the secrecy of the ballots. In fact, there
is a lot of research going on in the cryptographic community to
address this apparent contradiction and to guarantee ballot secrecy
and the correctness of the results at the same time [Sch00]. Most of
this research elaborates on schemes and protocols for secure multi-
party computation (e.g., [Hir01]).

Against this background, it is important to note that the security
requirements of e-voting are fundamentally different and more difficult
to satisfy than the ones of electronic commerce (e-commerce). In e-
commerce, financial transactions are performed online, but there is
always a separate offline process for checking them and for
correcting any errors detected. This is not, and cannot be, the case
for e-voting.7 Therefore, the fundamental security emphasis in e-
voting must be prevention of fraud and error, with no reliance on any
possibility of after-the-fact correction. This is a much more stringent
requirement than is generally necessary today for financial and e-
commerce transactions.

Most security requirements of Internet voting can be addressed with
existing technologies, mechanisms, and services (e.g., [Opp02a,
Opp02b]). For example, the authenticity of the voter and the voting
server can be addressed with public key certificates. Similarly, the
secrecy and integrity of the ballots can be addressed with the Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) protocol. It is,

quickly that it cannot be stopped. Malicious code is also known as malware or
vandalware. These terms, however, are not used in this paper. Malicious software
is usually distributed to computer systems through a variety of mechanisms
known as computer viruses, worms, Trojan horses, back doors, trapdoors, or
logic bombs.

7 This is because it must be made impossible to sell votes. Note that if a voter
received a proof for his or her actual vote (i.e., the ballot he or she actually
casted), he or she could sell it and large-scale vote selling and buying would
become a problem.

however, important to note that the use of the SSL/TLS protocol
protects the secrecy and integrity of the ballots only during their
transmission over the Internet. The ballots are not automatically
protected at the client or server side. In fact, additional security
technologies, mechanisms, and services are required to protect the
secrecy and integrity of the ballots before and after they are
transmitted over the Internet. Consequently, there are some
additional risks for the secrecy of the ballots (i.e., privacy risks)
related to the use of spyware8 (e.g., in the home setting) and remote
system administration tools (e.g., in the institutional setting).
Fortunately, the use of code sheets as recommended in this paper
protects the voter against these additional privacy risks.

From a security point of view, the three possibilities to implement
Internet voting (i.e., poll-site Internet voting, kiosk voting, and remote
Internet voting) have specific security properties and implications.
Since election officials control the voting client, platform, and
operating environment in poll-site Internet voting, managing the
security of such a system seems feasible. Similarly, in the case of
kiosk voting, the voting client and its platform are under the control of
election officials and can be secured accordingly. Furthermore, the
operational environment can be modified as needed and monitored to
address security and privacy concerns (e.g., to prevent coercion or
other forms of intervention). Consequently, most of the security
problems related to kiosk voting could, at least in principle, be
resolved through extensions of existing technologies. Contrary to poll-
site Internet voting and kiosk voting, however, remote Internet voting
still poses substantial security problems and entirely new challenges.
Without official control of the voting client and its platform, there are
many ways to use malicious software to manipulate a voting process
and its results. Against this background, the integrity of the ballots in
general, and protection against malicious software in particular, are
among the most important security requirements for remote Internet
voting to be used on a large scale. Ronald L. Rivest has coined the
term „secure platform problem“ to refer to the problem of protecting
an inherently insecure platform against malicious software and
corresponding attacks [Riv01].

8 Spyware is software that can be used by one user to spy on the activities of another

user (on the same or-even more importantly-on another system). A famous
spyware is, for example, Backorifice 2000 (BO2K). Further information about
BO2K and its source code can be found at http://www.bo2k.com.

It is widely believed that the secure platform problem is the Achilles
heel of any remote Internet voting process and system. For example,
[IPI01] argues that „remote Internet voting systems pose significant
risk to the integrity of the voting process and should not be fielded for
use in public elections until substantial technical and social science
issues are addressed.“ Similar arguments can be found in [Cal00]. In
fact, most relevant investigations and studies conclude

• That the environment that remote Internet voting operates in
creates some unique security concerns;

• That currently available client software is far too vulnerable to be
used for remote Internet voting;

• That further research is required to come up with security
technologies that will eventually solve the problem.

Against this background, most security experts argue that poll-site
Internet voting and kiosk voting are feasible in the mid term, whereas
remote Internet voting is not feasible. Again referring to [IPI91],
„current and near-term technologies are inadequate to address these
risks.“ Instead, it is often argued that „any use of the Internet for
voting purposes should be phased-in gradually,“ and that Internet
voting „would be best served by a strategy of evolutionary rather than
revolutionary change“ [Cal00]. This basically means that one should
start with poll-site Internet voting systems (phase 1), then move to
kiosk voting systems (phase 2), until one finally goes to remote
Internet voting systems (phase 3).

There are a couple of proposals that elaborate on how to implement
poll-site Internet voting in phase 1:

• In a short note about Internet voting,9 Bruce Schneier suggested
the use of an ATM-style computer voting machine that is
physically located at poll-site and that also prints out paper
ballots. The voter must check his or her paper ballot for accuracy,
and drop it into a sealed ballot box. The voting machine provides
the tally, but the paper ballots are still the official votes that could
eventually be used for recounts.

• Similarly, a group of researchers from the California Institute of
Technology (CalTech), the Massachusetts Institute of Technology
(MIT), and Compaq proposed a modular architecture to

9 The note entitled „Voting and Technology“ can be found in the Crypto-Gram

Newsletter of December 15, 2000. An online version of this newsletter can be
found at http://www.counterpane.com/crypto-gram-0012.html.

implement poll-site Internet voting in the near-term [BJR01]. The
basic idea is that election officials distribute preprepared and
empty electronic ballots (so-called „frogs“) to legitimate voters,10
to have these people remotely generate their vote, and to have
the voters cast their votes (i.e., deposit their frogs) at poll-site.
The vote casting devices at poll-site are operated and
administered by election officials and may provide a reasonable
level off security, accordingly. As such, the casted votes can be
digitally signed using the devices' private keys. Finally, the frogs
provide an audit trail that could eventually be used for disputes
and recounts.

Due to the fact that the secure platform problem is known to be hard
and difficult to solve, there are also some research and development
projects that don't even try to address it. For example, in the FAQ
document11 of the European CyberVote project,12 the question „Can a
virus or Trojan horse attack CyberVote?“ is answered the following
way: „Yes, like any other client software in an insecure PC
environment. Anti-virus software should be used and strict security
guidelines followed to limit the risk of a virus or Trojan horse attack.
Secure user interface techniques can be applied to the CyberVote
client to prevent Trojan horses.“ Unfortunately, the FAQ document
does not elaborate on what is meant with the term „secure user
interface techniques.“

In summary, the secure platform problem is known to be hard in the
scientific community. The wide belief that is not possible today to
implement remote Internet voting in a sufficiently secure way on a
large scale, however, only makes sense and applies to an
environment that does not provide support for absentee balloting. If a
state provides support for absentee balloting (using, for example,
voting by postal mail), this line of argumentation does no longer
apply. In this sitaution, the security level of any new voting
mechanism, such as remote Internet voting, must only be comparable
to the security level of voting by postal mail. As discussed in this
paper, this level of security seems feasible today.

10 A frog can be represented, for example, by a „dumb“ flash memory card with a lock

capability. The architecture, however, is technology-neutral and can be
implemented using alternative technologies, as well.

11 http://www.eucybervote.org/faq_security.html#q35
12 http://www.eucybervote.org

5 Analysis of the Secure Platform Problem
When talking about remote Internet voting, it is generally assumed
that the voting client is an application (program) running on a platform
that consists of a personal computer13 (PC) and a general-purpose
operating system, such as Windows or Linux. In a typical setting, the
PC is the one the voter uses at home (i.e., in the home setting) or at
work (i.e., in the institutional setting). As such, it is administered and
operated by the voter or a third party acting on behalf of the voter.

Currently deployed operating systems are open software systems
(i.e., they are not software-closed).14 Users routinely change the
systems' functionalities by adding software modules, such as
upgrades, patches, device drivers, DLL files, and other extensions
acquired from arbitrary sources. The software modules are
sometimes added to the operating system as a side-effect of
deliberately installing or upgrading application software. In fact, users
are often unaware that their operating system has been changed, and
certainly have no way of approving or certifying the security and
safety of these changes. Similar to legitimate software modules,
malicious software can also change an operating system at will.

Application software, such as a Web browser, is often even more
openly designed and more casually modified through the addition of
software modules (e.g., plug-ins, Java applets, ActiveX controls,
JavaScript scripts, ...).15 In many cases, software modules are
downloaded without the user's knowledge as an invisible side-effect
of merely visiting a Web site, and yet they have the power to modify
the installed software and the behavior of a PC. Many examples of
how to misuse this power have been papered in the press. For
example, the German Chaos Computer Club demonstrated an
ActiveX control that could initiate and queue up an electronic funds
transfer using the European version of the Quicken software in 1997.
The ActiveX control was written only for demonstration purposes and
its developers did not attempt to hide its actions. Consequently, it is

13 In this paper, the term personal computer is meant to include personal digital

assistants (PDAs) with corresponding operating systems.
14 Note that an open software system is not the same as a system that uses open

source software.
15 Sometimes, this type of software is called „mobile code.“ This term is not used in

this paper, mainly because „mobile code“ is typically not more mobile than other
code. Rather, the characteristic fact of this code is that it is automatically and
transparently executed on the client side.

possible and very likely that ActiveX controls can be written and
deployed that operate more stealthy and are more dangerous
accordingly. The same is true for all programming and scripting
langauges in use today.

The easy extensibility of both the operating system and the
application software is extremely valuable for the flexibility and
adaptability of a PC. It is part of what has allowed the astonishingly
fast evolution cycles in the computer industry. The background
danger, however, is that any software module can harbor malicious
code to attack a PC from the inside. For example, Ken Thompson16
showed in his 1984 ACM Turing Award lecture that it is very difficult
to detect malicious code in an arbitrary piece of software, and that no
amount of source-level verification or scrutiny can change this fact.17
The reason is that malicious code can be introduced at every step in
the software production, compilation and execution processes. For
example, a modified compiler that autonomously introduces a Trojan
horse into compiled software is very difficult to detect (to say the
least). Consequently, Thompson concluded that „you can't trust code
that you did not totally create yourself“ [Tho84]. Unfortunately, it is not
possible to create oneself all code that is neceassry to operate a
contemporary PC.

In addition, it is a fundamental theorem of the theory of computation
that there can be no general test to decide whether or not a computer
system and its software is harboring malicious code.18 This is
unfortunate and as a consequence, commercial virus detection
software can detect and neutralize only known computer viruses (they
basically scan large amounts of data for known computer virus
patterns). They can do nothing or very little about unknown computer
viruses. This has to be kept in mind when one talks about operating
systems and application sofware that are assumed to be „clean.“

16 Ken Thompson is one of the developers of the UNIX operating system.
17 This statement does not imply that source code inspection is useless. It only

means that source code inspection does not provide a guarantee that the
corresponding software does not inlcude malicious code. Source code inspection
does provide, however, a general impression about the style of programming and
its security and safety properties.

18 This theorem is a corollary of a theorem claiming that the halting problem is
undecidable. This basically means that there is no algorithm that can decide for
all possible Turing machines and all possible input strings whether a given Turing
machine and input string halts after a finite amount of time.

Taking all of these facts into account, one must admit that the PC as
it is used today is a very dangerous platform from which to perform
transactions that must be secure. This is true for e-commerce, but it is
particularly true for e-voting (the arguments why e-voting is even
more critical from a security point of view are given above). If remote
Internet voting were permitted from PCs with standard operating
systems and standard Web browsers, it would be very simple for a
rougue programmer to write malicious software, lure potential voters
to download that software (possibly unknowingly), and have the
software either spy on the votes, or change them without the voters'
knowledge. Consequently, it must be made infeasibleor at least
very difficultto write software that can autonomously do these kinds
of things. Some technical approaches are overviewed and discussed
next.

6 Technical Approaches to Address the Secure
Platform Problem

First of all, it is important to note that the use of cryptography does
not help to addressor even solvethe secure platform problem for
remote Internet voting. Rather than being a cryptographic problem,
the secure platform problem is the problem of how to interface the
voter to a cryptographic voting protocol and its implementation.
Almost all cryptographic voting protocols assume that a voter has a
secure and trusted computing base (i.e., platform) that faithfully
executes his or her part of the protocol. More specifically, the platform
is assumed to correctly display to the voter his or her intended vote,
and correctly submit this vote during the execution of the voting
protocol. Consequently, the platform is assumed to act as the voter's
trusted agent. To put it into other words: The platform is the voter as
far as the voting protocol is concerned [Riv01]. Even if an additional
layer of cryptography is added, the problem of how to properly and
securely interface the voter to this new layer must be solved.

Contrary to the use cryptography, there are a few technical
approaches that can be used to address the secure platform problem
for remote Internet voting. The following classification is taken from
[Cal00] and is also used in this paper:19

• „Clean“ operating system and voting application;

19 Not all terms are well chosen. Nevertheless, they are used for consistency

reasons.

• Special security PC hardware;

• Closed secure devices;

• Secure PC operating systems;

• Code sheets;

• Test ballots;

• Obscurity and complexity.

Unfortunately, not all approaches are technically implementable or
enforceable. Their advantages and disadvantages are overviewed
and briefly discussed next.

6.1 „ Clean“ Operating System and Voting Application

This approach requires that the voter boots his or her PC from a CD-
ROM (or a similar read-only medium) that contains an operating
system and the voting application client software that are assumed to
be „clean.“ The CD-ROM must be designed, producded, and
distributed by a trustworthy source (e.g., the state that organizes and
manages the voting process).

There are basically two possibilities to design the voting application
client:

• The client allows the voter to directly use the Internet to cast his or
her vote;

• The application allows the voter to fill out and authenticate a ballot.
This ballot is then submitted to an application server at some later
point in time (not necessarily using the voting application client
software).

In the first case, the CD-ROM must include a sufficiently complete
operating system that includes, among other things, all networking
software that is required to use the Internet. In the second case, the
CD-ROM must include only a small operating system that does not
include any networking software. In this case, however, it is
necessary to authenticate the ballot after it has been filled out. This
authentication requires the computation of a message authentication
code (MAC) that can be verified on the server side. MAC computation
and verification, in turn, requires a secret key that is shared between
the client and the server.

The major advantage of this approach (i.e., using a „clean“ operating
system and voting application) is that a certain level of assurance can

be achieved that the software running on the PC used for remote
Internet voting is not compromised by malicious software. The level of
assurance, however, it hard to quantify, mainly because it is hard to
say how „clean“ an operating system and its application software
really is. In fact, it happened in the past that software vendors
shipped products that had been infected by malicious software.

There are many disadvantages related to this approach. First of all, it
is very difficult and challenging to design and produce a CD-ROM
from which most PCs in use today can boot from. Some PCs may not
even be configured to be bootable from a CD-ROM, and these PCs
must be modified at the BIOS level. This is certainly something that
goes beyond the technical capabilities of most users. Also, the CD-
ROMs must be complete and include all device drivers and software
modules that are necessary to use the PC for remote Internet voting.
The amount of software primarily depends on which of the two
possibilities to design the voting application client (enumerated
above) has been chosen. In the first case, for example, the CD-ROM
must also include, for example, the drivers for most modems in use
today, as well as a full implementation of the TCP/IP protocols. From
a voter's point of view, the major disadvantage is related to the fact
that he or she must boot the PC before filling out the ballot or casting
the vote. This is uncomfortable and in many situations impossible.
Also, it is an open question how one would have voters configure
their PCs for Internet connectivity in the first case enumerated above
(without having the state act as an Internet service provider). Last but
not least, it is difficult and not always possible to decide on the server
side if a voter has booted his or her PC from an official CD-ROM and
if he or she is using the voting application client software from the
CD-ROM. Note, for example, that the voting application client can
(and is very likely to) be a normal browser.

In summary, the distribution and use of a „clean“ operating system
and voting software is a theoretically interesting approach. It is,
however, prohibitively difficult and expensive to implement and
enforce in practice. As such, it is not considered as a viable solution
for the secure platform problem in this paper.

6.2 Special Security PC Hardware

This approach requires a special security PC hardware that is
attached to the voter's PC (e.g., through a USB port). The purpose of
the hardware is to display the ballot, accept the voter's choices as
input, eventually perform some cryptographic computations, and
output the result. As such, the voting is done enirely in the special

security PC hardware, and the PC it is attached to is only used as a
device to interconnect to the Internet. The important fact about the
special security PC hardware is that it is a device that can be made
software-closed, meaning that its installed software base cannot be
modified (and cannot be attacked by malicious code accordingly).

The major advantage of this approach is the arguably high level of
protection against malicious software and corresponding attacks.
Since the special security PC hardware can be used only for remote
Internet voting, it can be made software-closed and highly secure.
This point was already made by the U.S. Institute for Computer
Sciences and Technology in 1988 [Sal88]. On the other side,
however, the fact that the special security PC hardware is single-
purpose also means that it must be provided by the state organizing
and managing the vote or a legitimate representative thereof. The
major disadvantage of this approach is related to the fact that it is
prohibitively expensive to be deployed on a large scale.
Consequently, it is not considered as a viable solution for the secure
platform problem in this paper.

6.3 Closed Secure Devices
Similar to special security PC hardware, it is possible that special,
software-closed, Internet-capable devices may be developed and
deplyoed for e-commerce applications. If this were the case, the
same devices could also be used for remote Internet voting.

As of this writing, neither are closed secure devices available on a
large scale, nor is it likely that such devices will become available and
widely deployed soon. Consequently, this approach is not considered
as a viable solution in this paper.

6.4 Secure PC Operating Systems
This approach assumes the existence and wide deployment of PC
operating systems that are inherently more secure than currently
deployed operating systems. Unfortunately, the design, development,
implementation, and deployment of a secure PC operating system is
very difficult in both theory and practice. There are some research
and development projects going on, such as the Trusted Computing
Platform Alliance (TCPA20) or the Extremely Relibale Operating

20 http://www.trustedpc.org/home/home.htm

System (EROS21). It is, however, not sure whether any of these
projects will be successful in the long term, and whether any of the
resulting operating systems will be used on a large scale.

Due to their current unavailability, secure PC operating systems are
not considered as viable solutions for the secure platform problem in
this paper.

6.5 Code Sheets
The basic idea of this approach is to use randomly-looking character
strings (representing codes or code numbers) to cast a vote.
Consequently, the use of code sheets requires a modified voter
behavior. The voter enters a code number istead of „YES“ or „NO“ (in
the case of a vote) or a candidate's name (in the case of an election).
All code numbers must be distributed on personalized code sheets,
and these sheets must be secretly distributed using, for example,
postal mail. In either case, the code sheets must be provided outside
the reach of the voter's PC (i.e., the PC that is used by the voter to
cast his or her vote). If the code sheets were inside the reach of the
PC, malicious software could get and use them to change the ballots.
Also, the code numbers must be randomly or pseudo-randomly
chosen from a sufficiently large set of possible values to make the
probability that malicious software can correctly guess a code number
arbitrarily small (i.e., negligible).

In the literature, the use of code sheets for voting is sometimes also
referred to as „code voting“ [Cha01]. As discussed later, there are
many possibilities to implement code voting. In a full implementation,
for example, the server may send back a verification number to the
voter and the voter can use this number to verify that he or she has
casted the vote to an authentic server, and that the vote has been
properly registered by the server. In either case, anonymity must be
provided by using an additional server system that decodes the
ballots and forwards them anonmyously to the actual voting server.

The major advantage of code voting is protection against malicious
software without having to boot a PC or install and configure any new
hardware or software. Also, the approach is able to protect against
the privacy risks mentioned above. If a voter enters a code number
(instead of „YES“ or „NO“), anybody using spyware or a remote
administration tool is not able to decide whether the voter actually
casted a „YES“ or „NO“ (this is not true for a „verification number-

21 http://www.eros-os.org

only“ implementation). All he or she would see is a code number that
looks random. Contrary to that, the major disadvantages are related
to the necessity to distribute personalized code sheets on the one
hand, and the modified voter behavior on the other hand.

In summary, the use of code sheets is considered as a viable solution
for the secure platform problem in this paper. In fact, it is part of the
solution that is recommended in this paper.

6.6 Test Ballots
This approach requires that special test ballots are casted from voting
clients, and that the proper receipt of these ballots is systematically
verified on the server side. If the test ballots are generated in some
statistically meaningful way, attacks can be detected and some of
these attacks may be caused by malicious software. As such, test
ballots can also be seen as an intrusion detection system (IDS)
specifically designed and used for remote Internet voting.

The major advantage of this approach is that it works independently
from any attack pattern and that it provides a quantitative measure of
the size of the attack it detects. Also, it can be used to detect any
systematic cause of lost ballots, not just attacks caused by malicious
software. Contrary to that, the major disadvantage of this approach is
related to the fact that test ballots don't protect against attacks; it only
detects them after the fact. Hence they are ideally combined with one
(or several) preventative approach(es), such as code sheets.

The use of test urnes is considered as a viable solution for the secure
platform problem in this paper. In fact, it is recommended to use them
in combination with code sheets.

6.7 Obscurity and Complexity

This approach (also known as „security through obscurity“ in the
literature) has a long (but not particularly successful) history in
computer security. It basically means that everything related to the
voting process (e.g., the format of the electronic ballots, the internals
of the voting software, ...) is kept secret prior to the vote and possibly
randomly changed during the vote. Also, everything is kept as
complex as possible.

The major advantage of this approach is that it makes the writing of
malicious software difficult and time-consuming. Contrary to that, a
disadvantage is related to the fact that it is difficult if not impossible to
specify a lower bound for the amount of time needed to write

malicious software. More worrisome, history has shown that „security
through obscurity“ hardly works in practice. More recently, the DVD
industry has learned this lesson in an uncomfortable way.22
Consequently, obscurity and complexity are not considered as viable
solutions for the secure platform problem in this paper.

7 Recommendations
Having the technical approaches to address the secure platform
problem for remote Internet voting in mind, one may conclude that the
combined use of code sheets and test urnes provides a reasonable
and practical approach. This is particularly true for environments that
already support absentee balloting (e.g., voting by postal mail). It is
not necessarily true for environments that do not support absentee
balloting. The use of code sheets is particularly well suited for an
environment in which the state already provides physical and
personalized material (e.g., voting cards) to the voters, using, for
example, postal mail. In this case, every mail delivery can also
include a personalized code sheet.

There are at least three possibilities to implement code voting. For
example, there is the possibility to fully implement code voting using
code numbers and verification numbers (i.e., full implementation).
There is, however, also the possibility to use either only code
numbers (i.e., „code number-only“ implementation) or verification
numbers (i.e., „verification number-only“ implementation). Among
these possibilities, a „verification number-only“ implementation is
particularly interesting, because the voter has to minimally change his
or her behavior (i.e., he or she can still enter “YES” or “NO” and only
has to validate the verification number sent back from the serber).
This advantage, however, may also be a disadvantage, because it is
possible and very likely that some voters wont care about the validity
of verification numbers sent back from the server.

Code voting makes use of code and verification numbers. The
numbers need not be long; their length must only make the probability
to correctly guess a number sufficiently small. For example, if the
number includes 10 binary digits (bits) the probability to correctly

22 In 1999, the 15 years old Jon Johansen created the DeCSS (De Contents

Scramble System) program so that he could view his DVDs on a Linux machine.
DeCSS defeats the copyright protection system known as Contents Scramble
System (CSS), which the entertainment industry uses to protect films distributed
on DVDs. Johansen created and published DeCSS as part of an open source
development project to build Linux DVD players called LiViD, or Linux Video.

guess a number is 1/210 = 1/1'024 = 0.000975562 ≈ 0.01%. Due to
the fact that the numbers can't be verified off-line, this seems to be
sufficient. 10 bits can be represented with log 210 = log 1'024 decimal
digits which is slightly more than 3 digits. Consequently, 4 decimal
digits can be used to encode a code number and some redundancy
to detect errors.23

There are many possibilities to generate 10-bit numbers. For
example, one possibility is to use a keyed one-way hash function and
to truncate the results to 10 bits.24 In the sequel, the term h(K,M) is
used to refer to the result of a keyed one-way hash function for the
message M (h is a one-way hash function and K is a secret key). This
result represents a MAC. In the literature, there are many proposals
to compute and verify MACs (e.g., the HMAC construction as
specified in [KBC97]).

To implement code voting, it is assumed that there is one or two
unrelated and independent cryptographic keys (i.e., K1 and K2) for
each voting process. The keys must be randomly chosen and kept
secret (i.e., only the voting server(s) must have access to the keys). It
is further assumed that the string M refers to the concatenation of a
reference number for the vote and a reference number for the voter or
voting card. In this case, the code number for choice (with choice
being „YES“ or „NO“ in the case of a vote and a candidate's name in
the case of an election) can be computed as trunc(h(K1,M|choice)),
and the verification number can be computed as trunc(h(K2|choice)).
In either case, | refers to the concatenation and trunc refers to a
function that truncates the argument to a specific length. For code
numbers (verification numbers), the length is 10 bits (13 bits). For
code numbers, 3 bits of redundancy are added to make it possible to
detect errors. Because voters are not required to type in verification
numbers, the use of redundancy to detect errors is not needed for
these numbers.

8 Conclusions and Outlook
In this paper, we argued that there are many possibilities to
implement Internet voting, and that remote Internet voting is
particularly interesting and challenging. It is challenging, mainly

23 The redundancy scheme is not further addressed in this paper.
24 Note that one-way hash functions typically provide hash values that are 128 (MD5)

or 160 (SHA-1) bits long, and that these values canbe represented in 32 or 40
hexadecimal characters.

because the voter casts his or her ballot at a private site whether he
or she (or a third party acting on behalf of the voter) administers and
controls the the voting client, platform, and operating environment.
This opens the problem that the client platform may be compromised
by malicious software to change the voter’s ballot before casting it.
This problem is referred to as the secure platform problem.

Among the technical approaches to address the secure platform
problem for remote Internet voting, the combined use of code sheets
and test urnes looks promising. The major advantage (in addition to
security) is that the use of code sheets does not need additional
hardware or software on the client side. Furthermore, the use of code
sheets is similarly applicable to wireless environments, using, for
example, mobile phones and WAP devices. As such, the use of code
sheets is as technically neutral as possible.

The major open question with regard to the use of code sheets is its
usability: will voters accept the new behavior to cast a vote? Instead
of simply writing „YES“ or „NO“ or crossing a corresponding checkbox
they will have to write down or type in a number that looks like a 4-
digit random number to them. It is an open question whether they
understand and will be willing to adapt this behavior.25 Using, for
example, a „verification number-only“ implementation in a first step,
may provide an easy way to get used to the new voting behavior. The
problem with a „verification number-only“ implementation, however, is
that voters may not check the verification number sent back from the
voting server. It will be interested to see the use of code sheets
deployed in practice and to learn from the experiences.

9 Acknowledgments
The author thanks the Chancellory of the State of Geneva to give the
possibility to work in this interesting and challenging area. He also
thanks Michel Warynski, Bernard Taschini, and Jean-Paul Kroepfli for
the interesting discussions about possible implementations.

10 Literatur
[BJR01] Shuki Bruck, David Jefferson, and Ronald L. Rivest: A

Modular Voting Architecture, Proceedings of the Workshop on
Trustworthy Elections (WOTE '01), August 2001.

25 There may also be a legal issue. Entering a number instead of „YES“ or „NO“ is

not possible in all legislations.

[Cal00] California Secretary of State, California Internet Voting Task
Force, Final Paper, January 2000.

[Cha01] David Chaum: SureVote: Technical Overview, Proceedings
of the Workshop on Trustworthy Elections (WOTE '01),
presentation slides, August 2001.

[Hir01] Martin Hirt: Multi-Party Computation: Efficient Protocols,
General Adversaries, and Voting, Ph.D. Thesis, ETH Zurich,
Reprint as Vol. 3 of ETH Series in Information Security and
Cryptography, Hartung-Gorre Verlag, Konstanz, 2001.

[IPI01] Internet Policy Institute: Paper of the National Workshop on
Internet Voting: Issues and Research Agenda, March 2001.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti: HMAC:
Keyed-Hashing for Message Authentication, Request for
Comments 2104, February 1997.

 [Opp02a] Rolf Oppliger: Internet and Intranet Security, 2nd Edition,
Artech House, Norwoord, MA, 2002.

[Opp02b] Rolf Oppliger: Security Technologies for the World Wide
Web, 2nd Edition, Artech House, Norwoord, MA, to appear in
November 2002.

[Riv01] Ronald L. Rivest: Electronic Voting, Proceedings of Financial
Cryptography '01, February 2001.

[Rub01] Aviel D. Rubin: Security Considerations for Remote
Electronic Voting over the Internet, Proceedings of the 29th
Research Conference on Communication, Information and Internet
Policy (TPRC2001), October 2001.

[Sal88] Roy G. Saltman: Accuracy, Integrity, and Security in
Computerized Vote-Tallying, Institute for Computer Sciences and
Technology, NBS Special Publication 500-158, Gaithersburg, MD,
August 1988.

[Sch00] Berry Schoenmakers: Fully Auditable Electronic Secret-Ballot
Elections, Xootic Magazine, July 2000, Vol. 8, No. 1

[Tho84] Ken Thompson: Reflections on Trusting Trust, Communi-
cations of the ACM, Vol. 27, No. 8, August 1984, pp. 761-763

