
11.2.2 GCM

Like CCM, GCM is designed to use a 128-bit block cipher (e.g., AES) in CTR mode.
But unlike CCM, the CTR mode of GCM uses a unique counter incrementation
function and a message authentication construction that employs a universal hash
function based on polynomial evaluation in GF (2128). According to Section
10.3.3, this construction yields a Carter-Wegman MAC. The NIST document that
specifies the GCM mode [6] also refers to an authentication-only variant of GCM
called Ga-lois message authentication code (GMAC). In short, GMAC uses GCM
encryption but requires no data to be encrypted, meaning that all data are only
authenticated.

GF (2128) is an extension field ofGF (2). Its elements are strings of 128 bits,
and its operations are addition (⊕) and multiplication (·). If x = x0x1 . . . x127
andy = y0y1 . . . y127 are two elements ofGF (2128) with xi andyi representing
bits for i = 0, 1, . . . , 127, thenx ⊕ y can be implemented as bitwise addition
modulo 2 andx · y can be implemented as polynomial multiplication modulo an
irreducible polynomial (Appendix A.3.6). In the case of GCM, this polynomial is
set tof(x) = 1 + x+ x2 + x7 + x128 (according to the standard).

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

This text is an updated version of Section 11.2.2 from a book written by Rolf
Oppliger in 2021 (ISBN 978-1-63081-846-3)

316 Cryptography 101: From Theory to Practice

Algorithm 11.3 GHASH function used in GCM mode.

(h, x)

y0 = 0128

for i = 1 to n doyi = (yi−1 ⊕ xi) · h

(yn)

GCM employs two complementary functions: A hash function called GHASH
and an encryption function called GCTR that is a variant of “normal” CTR mode
encryption.

Figure 11.2 The GHASH function.

• The GHASH function is specified in Algorithm 11.3 and illustrated in Figure
11.2.2 It takes as input a 128-bit hash subkeyh andx = x1 ‖ x2 ‖ . . . ‖ xn
that is a sequence ofn 128-bit blocksx1, x2, . . . , xn, and it generates as output
a 128-bit hash valueyn. The function is simple and straightforward: It starts
with a 128-bit blocky0 that is initialized with 128 zeros (written as0128), and
it then iteratively adds the next block ofx and multiplies the result with the
hash subkeyh. This is iteratedn times, untilyn is returned as output. More
specifically,y1, y2, . . . , yn can be computed as follows:

2 While GHASH is a hash function, it is not a cryptographic one.

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

Authenticated Encryption 317

y1 = (y0 ⊕ x1) · h = x1 · h
y2 = (y1 ⊕ x2) · h = (((y0 ⊕ x1) · h)⊕ x2) · h = x1 · h2 ⊕ x2 · h
y3 = (y2 ⊕ x3) · h = ((x1 · h2 ⊕ x2 · h)⊕ x3) · h

= x1 · h3 ⊕ x2 · h2 ⊕ x3 · h
. . .

yn = x1 · hn ⊕ x2 · hn−1 ⊕ . . . ⊕ xn−1 · h2 ⊕ xn · h

=

n⊕

i=1

xi · hn+1−i

Note thaty0 does not influence the computation, and that only the last
valueyn is needed to form the output (all other values are noted here just for
the sake of transparency).

Algorithm 11.4 GCTR encryption function.

(k,ICB, x)

if x is empty then return empty bit stringy
n = ⌈|x|/128⌉
b1 = ICB
for i = 2 to n do bi = inc32(bi−1)
for i = 1 to n− 1 doyi = xi ⊕ Ek(bi)
yn = xn⊕ MSB|xn|(Ek(bn))

y = y1 ‖ y2 ‖ . . . ‖ yn−1 ‖ yn
(y)

• The GCTR encryption function is specified in Algorithm 11.4. It takes as input
a keyk, an initial counter block (ICB), and an arbitrarily long bit stringx, and
it generates as output another bit stringy that represents the encrypted version
of x usingk and the ICB. More specifically,x = x1 ‖ x2 ‖ . . . ‖ xn is
a sequence ofn = ⌈|x|/128⌉ blocks, wherex1, x2, . . . , xn−1 are complete
128-bit blocks butxn does not need to be complete (i.e.,|xn| ≤ 128). The
algorithm uses a sequence ofn 128-bit counter blocksb1, b2, . . . , bn that are
encrypted and then added modulo 2 to the respective blocks ofx. If xn is
incomplete, then the respective number ofbn’s most significant bits are used
and the remaining bits ofbn are simply discarded. In the end,y is compiled as
the concatenation of alln ciphertext blocksy1, y2, . . . , yn, whereyn can again
be incomplete. The auxiliary function incs(·) increments the least significant

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

318 Cryptography 101: From Theory to Practice

s bits of a block and leaves the remaining128 − s bits unchanged. This can
be formally expressed as follows:

incs(x) = MSB128−s(x) ‖ [int(LSBs(x)) + 1 (mod 2s)]s

In GCTR and GCM,s is 32 bits. This means that the first 96 bits ofx remain
unchanged and only the last 32 bits are incremented in each step.

Figure 11.3 GCM authenticated encryption.

Having prepared all the ingredients, we are now ready to explain and delve
more deeply into GCM authenticated encryption as specified in Algorithm 11.5 and
partly illustrated in Figure 11.3. As is usually the case in AEAD, the algorithm takes

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

Authenticated Encryption 319

as input a keyk for the block cipher in use, a variable-length noncer,3 a messagem
to be encrypted and authenticated, and some additional dataa to be authenticated.
The messagem comprises0 < |m| ≤ 239 − 256 bits that formn 128-bit blocks,
whereasa is 0 < |a| ≤ 264 − 1 bits long and formsl = ⌈|a|/128⌉ 128-bit blocks.
The output of the algorithm consists of two parts: The ciphertextc that is equally
long asm and the authentication tagt that can have a variable length (up to264 − 1
bits). The official specification suggests thatt is 128, 120, 112, 104, or 96 bits long,
and that there may be some exceptional applications and use cases wheret is only
64 or 32 bits long.

Algorithm 11.5 GCM authenticated encryption.

(k, r,m, a)

h = Ek(0
128)

if |r| = 96 theny0 = r ‖ 0311
elses = 128 · ⌈|r|/128⌉ − |r|

y0 = GHASH(h, (r ‖ 0s+64 ‖ [|r|]64))
c = GCTR(k, inc32(y0), m)
pada = 128 · ⌈|a|/128⌉ − |a|
padc = 128 · ⌈|c|/128⌉ − |c|
b = GHASH(h, (a ‖ 0pada ‖ c ‖ 0padc ‖ [|a|]64 ‖ [|c|]64))
t = MSB|t|(GCTR(k, y0, b)

(c, t)

The GCM encryption algorithm first generates a subkeyh for the GHASH
function. This value is generated by encrypting a block that consists of 128 zero
bits (i.e.,0128) with the block cipher and keyk. It then derives a 128-bit precounter
blocky0 from the variable-length noncer. This derivation is formally expressed in
Algorithm 11.5 but is not illustrated in Figure 11.3. In the most likely case thatr
is 96 bits long,y0 is just the concatenation ofr, 31 zero bits, and a one bit. This
yields 128 bits in total. If, however,r is not 96 bits long, then the construction of
y0 is slightly more involved. In this case,r is padded some with some zero bits
so that the concatenation ofr, the zero bits, and the 64-bit length encoding ofr
yields a string that is a multiple of 128 bits long (in Algorithm 11.5 a temporary
variables is used to determine the number of zeros). This string is then subject to
the GHASH function with subkeyh, so that the resulting precounter blocky0 is
again 128 bits long. In either case, this is the value Figure 11.3 starts with in the
upper left corner. The algorithm generates a sequence of counter values fromy0 by

3 Again, the distinction between a nonce and an IV is somehow vague. While the GCM specification
uses the notion of an IV, we use the notion of a nonce. It is particularly important that the value does
not repeat, and this is best characterized with the notion of a nonce.

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

320 Cryptography 101: From Theory to Practice

recursively applying the 32-bit incrementing function inc32(·). All y values except
y0 are then used to GCTR-encrypt the messagem with the keyk. This yields the
ciphertextc = c1 ‖ c2 ‖ . . . ‖ cn and terminates the encryption part of the algorithm.

The second part of the algorithm deals with authentication and generates a
respective tagt. The algorithm therefore computes the minimum numbers of zero
bits, possibly none, to pada andc so that the bit lengths of the respective strings
are both multiples of 128 bits. The resulting values arepada for a andpadc for c.
The algorithm then padsa andc with the appropriate number of zeros, so that the
concatenation ofa, 0pada , c, and0padc , as well as the 64-bit length representations
of a andc is a multiple of 128 bits long. Again, this string is subject to the GHASH
function with subkeyh. The result isb and this 128-bit string is input to the GCTR
function—together with the keyk and the formerly generated precounter blocky0.
If the tag length is|t|, then t refers to the|t| leftmost (most significant) bits of
the output of the GCTR function. The output of the GCM authenticated encryption
algorithm consists ofc andt.

Algorithm 11.6 GCM authenticated decryption.

(k, r, c, a, t)

verify lengths ofr, c, a, andt
h = Ek(0

128)
if |r| = 96 theny0 = r ‖ 0311

elses = 128 · ⌈|r|/128⌉ − |r|
y0 = GHASH(h, (r ‖ 0s+64 ‖ [|r|]64))

m = GCTR(k, inc32(y0), c)
padc = 128 · ⌈|c|/128⌉ − |c|
pada = 128 · ⌈|a|/128⌉ − |a|
b = GHASH(h, (a ‖ 0pada ‖ c ‖ 0padc ‖ [|a|]64 ‖ [|c|]64))
t′ = MSB|t|(GCTR(k, y0, b)
if t = t′ then returnm else returnFAIL

(m or FAIL)

GCM authenticated decryption works similarly, but the operations are per-
formed in more or less reverse order. It is specified in Algorithm 11.6 and partly
illustrated in Figure 11.4. The algorithm takes as inputk andr that are the same
as used for encryption, as well asc, a, andt, and it generates as output eitherm
or FAIL . First, the algorithm verifies the lengths ofr, c, a, andt. If at least one
of these lengths is invalid, then the algorithm aborts and returnsFAIL (this is not
explicitly mentioned in Algorithm 11.6). Next, the algorithm generates the subkey
h (i.e., it therefore encrypts the zero block with the block cipher and the keyk)
and the precounter blocky0 in exactly the same way as before. In the next step,

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

Authenticated Encryption 321

Figure 11.4 GCM authenticated decryption.

the messagem is decrypted. This step is essentially the same as in the encryption
algorithm, except that the roles ofm andc are swapped. Also, the computations of
pada andpadc as well asb are identical. On the basis ofb, the authentication tagt′

can be recomputed. Decryption is successful if and only ift′ equals the originally
received valuet. Otherwise, decryption fails and the algorithm signals this fact by
returningFAIL . Note that the final verification step, i.e., verify whethert′ equalst,
is not illustrated in Figure 11.4.

It is commonly believed that the GCM mode is secure as long as a new and
fresh noncer is used for every single message. If a nonce is reused, then it may
become feasible to learn the authentication key (i.e., the hash subkeyh) and to use it
to forge authentication tags. Because the encryption is a stream cipher that is highly

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

322 Cryptography 101: From Theory to Practice

malleable, the ability to forge authentication tags may empower an adversary to
mount some sophisticated attacks. Unfortunately, some Internet security protocol
specifications do not clearly specify how to generate nonces in a secure way.
For example, the specification of the TLS protocol does not say anything about
the generation of nonces for AES-GCM. Consequently, there are a few insecure
implementations that reuse nonces.4 Needless to say, these implementations are
susceptible to cryptanalysis and do not provide the level of security that is otherwise
anticipated with AES-GCM.

The uniqueness requirement for the nonce is addressed in Section 8 of the
standard [6], together with two techniques to construct respective nonces: A deter-
ministic construction and an RBG-based construction that both use two fields to
come up with a nonce that is as unique as possible. Furthermore, people have also
developed nonce-misuse resistant AE and AEAD modes for block ciphers, such as
AES-SIV [7] or—more recently—AES-GCM-SIV [8].5 In either case, the acronym
SIV stands for synthetic IV, and the idea is to deterministically derive the nonce
from the message (so that different messages automatically lead to different
nonces). If one has the choice, then it is certainly a good idea to use this technology
to make AE or AEAD modes nonce-misuse resistant.

 References

[6] U.S. Department of Commerce, National Institute of Standards and
Technology, Recommenda-tion for Block Cipher Modes of Operation: Galois/
Counter Mode (GCM) and GMAC, Special Publication 800-38D, November 2007.

[7] Harkins, D., Synthetic Initialization Vector (SIV) Authenticated
Encryption Using the Advanced Encryption Standard (AES), RFC 5297, October
2008.

Re
vis

ion
 o

f S
ec

tio
n

11
.2

.2
 fr

om
 C

ry
pt

og
ra

ph
y 1

01
: F

ro
m

 T
he

or
y t

o
Pr

ac
tic

e"
 w

rit
te

n
by

 R
olf

 O
pp

lig
er

