

ISBN: 978-1-63081-846-3

The following text is a revision of Section 6.4.5 taken from the book “Cryptography 101:
From Theory to Practice” that was written by Rolf Oppliger and published by Artech
House in June 2021 (in its Information Security and Privacy book series)

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

148 Cryptography 101: From Theory to Practice

6.4.5 KECCAK and the SHA-3 Family

As mentioned in Section 6.3, KECCAK36 is the algorithm selected by the U.S. NIST
as the winner of the public SHA-3 competition in 2012.37 It is the basis for FIPS
PUB 202 [25] that complements FIPS PUB 180-4 [19], and it specifies the SHA-3
family that comprises four cryptographic hash functions and two extendable-output
functions (XOFs). While a cryptographic hash function outputs a value of fixed
length, an XOF has a variable-length output, meaning that its output may have any
desired length. XOFs may have many potential applications and use cases, ranging
from pseudorandomness generation and key derivation, to message authentication,
authenticated encryption, and stream ciphers. Except from their different output
lengths, cryptographic hash functions and XOFs look very similar and may even
be based on the same construction (as exemplified here).

• The four SHA-3 cryptographic hash functions are named SHA3-224, SHA3-
256, SHA3-384, and SHA3-512. As in the case of SHA-2, the numerical
suffixes indicate the lengths of the respective hash values.38

• The two SHA-3 XOFs are named SHAKE128 and SHAKE256,39 where
the numerical suffixes refer to the security levels (in terms of key length
equivalence). SHAKE128 and SHAKE256 are the first XOFs that have been
standardized by NIST or any other standardization body.

The SHA-3 hash functions and XOFs employ different padding schemes (as
addressed below). In December 2016, NIST released SP 800-18540 that specifies
complementary functions derived from SHA-3. In particular, it specifies four types
of SHA-3-derived functions: cSHAKE, KMAC, TupleHash, and ParallelHash. The
acronym cSHAKE stands for “customizable SHAKE,” and it refers to a SHAKE
XOF that can be customized using a function name and a customization bit string.
KMAC is a keyed MAC construction that is based on KECCAK or cSHAKE,
respectively (Section 10.3.2). Finally, and as their names suggest, TupleHash is
a SHA-3-derived function that can be used to hash a tuple of input strings, and
ParallelHash can be used to take advantage of the parallelism available in modern
processors (using a particular block size). The details of these SHA-3-derived
functions are not further addressed here; the details can be found in the NIST SP
referenced above.

36 http://keccak.team.
37 http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3standardization.html.
38 The SHA-2 hash functions are named SHA-224, SHA-256, SHA-384, and SHA-512.
39 The acronym SHAKE stands for “Secure Hash Algorithm with Keccak.”
40 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

Cryptographic Hash Functions 149

Unlike all cryptographic hash functions addressed so far, KECCAK and the
SHA-3 hash functions do not rely on the Merkle-Damgård construction, but on
a so-calledsponge construction41 that is based on a permutation operating on a
data structure known as thestate. The state, in turn, can either be seen as a (one-
dimensional) bitstringS of lengthb or a three-dimensional arrayA[x, y, z] of bits
with appropriate values forx, y, andz (i.e.,xyz ≤ b).

Figure 6.4 The KECCAK state and its decomposition (c© keccak.team).

41 http://sponge.noekeon.org.

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

150 Cryptography 101: From Theory to Practice

The KECCAK state represented as an arrayA and its decomposition (as
addressed below) are illustrated in Figure 6.4. This figure is used in this book
with kind permission from the developers of KECCAK under a Creative Commons
Attribution 4.0 International License (together with Figures 6.8–6.11).42

In the case of SHA-3,b = 1600, 0 ≤ x, y < 5, and0 ≤ z < w (with
w = 2l = 64 for l = 6 as addressed below). Consequently, the state is either a
stringS or a (5 × 5 × 64)-arrayA of 1600 bits (as depicted in Figure 6.4). For all
0 ≤ x, y < 5 and0 ≤ z < w, the relationship betweenS andA is as follows:

A[x, y, z] = S[w(5y + x) + z]

Following this equation, the first elementA[0, 0, 0] translates toS[0], whereas the
last elementA[4, 4, 63] translates toS[64(5 · 4) + 4) + 63] = S[64 · 24 + 63] =
S[1599].

Referring to Figure 6.4, there are several possibilities to decomposeA. If
one fixes all values on thex-, y-, andz-axes, then one refers to a singlebit; that
is, bit[x, y, z] = A[x, y, z]. If one fixes the values on they- andz-axes and only
considers a variable value for thex-axis, then one refers to arow; that is,row[y, z] =
A[·, y, z]. If one does something similar and consider a variable value for they-
axis (z-axis), then one refers to acolumn(lane); that is,column[x, z] = A[x, ·, z]
(lane[x, y] = A[x, y, ·]). Lanes are important in the design of KECCAK because
they can be stored in a word and a 64-bit register of a modern processor.

If one fixes the values on they-axis and consider variables value for thex-
and z-axes, then one refers to aplane, plane[y] = A[·, y, ·]. Again, one can do
something similar and consider a fixed value for thez-axis (x-axis) to refer to aslice
(sheet), slice[z] = A[·, ·, z] (sheet[x] = A[x, ·, ·]). Some of these terms are used to
describe the working principles of KECCAK and its step mappings.

If one wants to convertA into a stringS, then the bits ofA are concatenated
as follows to formS:

S = A = plane[0] ‖ plane[1] ‖ . . . ‖ plane[4]
= lane[0, 0] ‖ lane[1, 0] ‖ . . . ‖ lane[4, 0] ‖

lane[0, 1] ‖ lane[1, 1] ‖ . . . ‖ lane[4, 1] ‖
lane[0, 2] ‖ lane[1, 2] ‖ . . . ‖ lane[4, 2] ‖
lane[0, 3] ‖ lane[1, 3] ‖ . . . ‖ lane[4, 3] ‖
lane[0, 4] ‖ lane[1, 4] ‖ . . . ‖ lane[4, 4]

42 https://keccak.team/figures.html.

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

Cryptographic Hash Functions 151

= bit[0, 0, 0] ‖ bit[0, 0, 1] ‖ bit[0, 0, 2] ‖ . . . ‖ bit[0, 0, 63] ‖
bit[1, 0, 0] ‖ bit[1, 0, 1] ‖ bit[1, 0, 2] ‖ . . . ‖ bit[1, 0, 63] ‖
bit[2, 0, 0] ‖ bit[2, 0, 1] ‖ bit[2, 0, 2] ‖ . . . ‖ bit[2, 0, 63] ‖
. . .

bit[3, 4, 0] ‖ bit[3, 4, 1] ‖ bit[3, 4, 2] ‖ . . . ‖ bit[3, 4, 63] ‖
bit[4, 4, 0] ‖ bit[4, 4, 1] ‖ bit[4, 4, 2] ‖ . . . ‖ bit[4, 4, 63]

Figure 6.5 KECCAK and the sponge construction.

The working principles of KECCAK and the sponge construction (used by
KECCAK) are overviewed in Figure 6.5. A messagem that is input on the left
side is preprocessed and properly padded (as explained below) to form a series of
n message blocksx0, x1, . . . , xn−1. These blocks are then subject to the sponge
construction that culminates in a series of output blocksy0, y1, y2, . . . on the right
side. One of the specific features of KECCAK is that the number of output blocks
is arbitrary and can be configured at will. In the case of a SHA-3 hash function,
for example, only the first output blocky0 is required and from this block only the
least significant bits are used (the remaining bits are discarded). But in the case of
a SHA-3 XOF (i.e., SHAKE128 or SHAKE256), any number of output blocks may
be used.

As its name suggests, a sponge construction can be used to absorb and squeeze
bits. Referring to Figure 6.5, it consists of two phases:

1. In theabsorbingor input phase, then message blocksx0, x1, . . . , xn−1 are
consumed and read into the state.

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

152 Cryptography 101: From Theory to Practice

2. In the squeezingor output phase, an outputy0, y1, y2, . . . of configurable
length is generated from the state. If KECCAK is used as a cryptographic hash
function, then typically onlyy0 is used, and fromy0 only the least significant
bits (and the remaining bits ofy0 are discarded). But if KECCAK is used as an
XOF, then a series of output blocksy0, y1, y2, . . . is needed.

The same functionf (known as KECCAK f -function orf -permutation) is used
in either of the two phases. The following parameters are used to configure the input
and output sizes as well as the security of KECCAK:

• The parameterb refers to the state width (i.e., the bitlength of the state). For
KECCAK, it can take any valueb = 5 · 5 · 2l = 25 · 2l for l = 0, 1, . . . , 6
(i.e., 25, 50, 100, 200, 400, 800, or 1600 bits), but the first two values are only
toy values that should not be used in practice. For SHA-3, it is required that
l = 6, and, hence,b = 25 · 26 = 25 · 64 = 1600 bits. Sinceb = 5 · 5 · 2l,
the state can be viewed as a cuboid with width 5 (representing thex-axis),
height 5 (representing they-axis), and lengthw = 2l or—as in the case of
SHA-3—26 = 64 (representing thez-axis). Anyway,b is the sum ofr andc
(i.e.,b = r + c).

• The parameterr is called thebit rate (or rate in short). Its value is equal to
the length of the message blocks, and hence it determines the number of input
bits that are processed simultaneously. This also means that it stands for the
speed of the construction.

• The parameterc is called thecapacity. Its value is equal to the state width
minus the rate, and it refers to the double security level of the construction (so
a construction with capacity 256 has a security level of 128).

Table 6.6
The KECCAK Parameter Values for the SHA-3 Hash Functions

Hash Function n b r c w

SHA3-224 224 1600 1152 448 64
SHA3-256 256 1600 1088 512 64
SHA3-384 384 1600 832 768 64
SHA3-512 512 1600 576 1024 64

The KECCAK parameter values for the SHA-3 hash functions are summarized
in Table 6.6. Note thatb andw are equal to 1600 and 64 in all versions of SHA-
3. Also note that there is a trade-off between the rater and the capacityc. They

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

Cryptographic Hash Functions 153

must sum up tob. But whetherr or c is made large depends on the application. For
any security level it makes sense to select ac that is twice as large and to use the
remaining bits forr. If, for example, one wants to achieve a security level of 256,
thenc should be512 and the remaining1600− 512 = 1088 bits determiner.

Before a messagem can be processed, it must be padded properly (to make
sure that the input has a bitlength that is a multiple ofr). KECCAK uses a relatively
simple padding scheme known asmultirate padding. It works by appending tom a
predetermined bit stringp, a one, a variable number of zeros, and a terminating one.
The number of zeros is chosen so that the total length of the resulting bit string is a
multiple ofr. This can be expressed as follows:

Padding(m) = m ‖ p ‖ 10∗1
︸ ︷︷ ︸

multiple of r

Note that the string0∗ = 0 . . . 0 can also be empty, meaning that it may comprise no
zeros at all. Also note that the value ofp depends on the mode in which KECCAK is
used. When using it as a hash function (and hence as a SHA-2 replacement),p refers
to the 2-bit string 01. Contrary to that, when using it to generate a variable-length
output,p refers to the 4-bit string 1111. The subtleties of these choices are provided
in [25]. Anyway, the minimum number of bits appended tom when used as a hash
function is 4 (i.e., 0111), whereas the maximum number of bits appended isr + 3
(if the last message block consists ofr− 1 bits). In the other case (i.e., when used to
generate a variable-length output), at least 6 bits and at mostr+5 bits are appended.
In either case, the result of the padding process is a series of message blocksxi
(i = 0, 1, . . .) each of which has a length ofr bits.

Figure 6.6 The KECCAK absorbing phase.

As mentioned above, the sponge construction used by KECCAK is based on
a permutation of the state. This permutation is calledf -function orf -permutation,

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

154 Cryptography 101: From Theory to Practice

and it permutes the2b possible values of the state. As illustrated in Figures 6.6 and
6.7, the samef -function is used in both the absorbing and squeezing phase. It takes
b = r + c bits as input and generates an output of the same length. Internally, the
f -function consists ofnr round functions with the same input and output behavior,
meaning that they all takeb bits as input and generateb bits of output. Remember
that l determines the state width according tob = 25 · 2l (and that SHA-3 uses the
fixed valuesl = 6 and henceb = 1600). The valuel also determines the number of
rounds according to the following formula:

nr = 12 + 2l

So the possible state widths 25, 50, 100, 200, 400, 800, and 1600 come along with
respective numbers of rounds: 12, 14, 16, 18, 20, 22, and 24. The longer the state
width, the larger the number of rounds (to increase the security level). As SHA-3
fixes the state width to 1600 bits, the number of rounds is also fixed to 24 (i.e.,
nr = 24).

Figure 6.7 The KECCAK squeezing phase.

In each round, a sequence of five step mappings is executed, where each step
mapping operates on theb bits of the state. This means that each step mapping
takes a state arrayA as input and returns an updated state arrayA′ as output. The
five step mappings are denoted by Greek letters: theta (θ), rho (ρ), pi (π), chi (χ),
and iota (ι). While the first step mappingθ must be applied first, the order of the
other step mappings is arbitrary and does not matter (andρ andπ are often defined
simultaneously).

The five step mappings are explained next. They are relatively simple to
capture visually, but difficult to capture mathematically. We try it anway. They all
map a 3-dimensional state arrayA toA′, where each array comprisesb = 1600 bits.
Thex−, y−, andz-axes are illustrated in Figure 6.4. As shown in Table 6.7, the the

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

Cryptographic Hash Functions 155

Table 6.7
The(x, y)-Coordinates of the Bits in a Slice

(3,2) (4,2) (0,2) (1,2) (2,2)

(3,1) (4,1) (0,1) (1,1) (2,1)

(3,0) (4,0) (0,0) (1,0) (2,0)

(3,4) (4,4) (0,4) (1,4) (2,4)

(3,3) (4,3) (0,3) (1,3) (2,3)

x− andy−axes are labeled in an unusual manner: Starting from the origin, the axes
are labeled 3, 4, 0, 1, and 2 (instead of 0, 1, 2, 3, and 4). So the(0, 0, z)-bit is in the
middle ofslice[z], whereas the labeling of thez-axis is normal.

The step mappings mainly operate on lanes, i.e.,w-bit words that can be
processed in a register on a modern processor. Again,lane[x, y] refers toA[x, y, ·],
i.e., all bits of the state that have the same(x, y)-coordinates. The (mathematical)
operations that are used include the addition and multiplication modulo 2, i.e., the
bitwise addition and multiplication inGF (2). This suggests that the addition is equal
to the Boolean XOR operation (⊕) and the multiplication is equal to the Boolean
AND operation (∧). With the exception of the round constants RC[ir] used in step
mappingι, the step mappings are the same in all rounds.

x

y z z

Figure 6.8 The step mappingθ. (c© keccak.team)

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

156 Cryptography 101: From Theory to Practice

6.4.5.1 Step Mappingθ (Theta)

The step mappingθ is visualized in Figure 6.8. Each bit in the state is replaced with
the modulo 2 sum of itself and the bits of two adjacent columns. More specifically,
for bit A[x0, y0, z0], thex-coordinate of the first column is(x0 − 1) mod 5, with
the samez-coordinatez0, while thex- and z-coordinates of the second column
are (x0 + 1) mod 5 and (z0 − 1) mod w. Consequently, the mappingθ can be
mathematically expressed as follows:

A′[x0, y0, z0] = A[x0, y0, z0] ⊕
4⊕

y=0

A[(x0 − 1) mod 5, y, z0]

⊕
4⊕

y=0

A[(x0 + 1) mod 5, y, (z0 − 1) mod w]

Algorithm 6.13 Step mappingθ.

(A)

for x = 0 to 4 do
for z = 0 to w − 1 do

C[x, z] = A[x, 0, z]⊕A[x, 1, z]⊕A[x, 2, z]⊕A[x, 3, z]⊕A[x, 4, z]

=
⊕4

y=0 A[x, y, z]

for x = 0 to 4 do
for z = 0 to w − 1 do

D[x, z] = C[(x− 1) mod 5, z]⊕ C[(x+ 1) mod 5, (z − 1) mod w]
for x = 0 to 4 do

for y = 0 to 4 do
for z = 0 to w − 1 do

A′[x, y, z] = A[x, y, z]⊕ D[x, z]

(A′)

An algorithm that can be used to computeθ and turnA into A′ is sketched
in Algorithm 6.13. In this notation, C[x, z] and D[x, z] refer to intermediate values
that refer to the modulo 2 sum of the bits in a column (in the case of C[x, z]) and the
modulo 2 sum of the bits in two columns (in the case of D[x, z]). Note that Algorithm
6.13 can be made more efficient by processing the bits of a lane simultaneously (not
addressed here).

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

Cryptographic Hash Functions 157

Figure 6.9 The step mappingρ. (c© keccak.team)

6.4.5.2 Step Mappingsρ (Rho) andπ (Pi)

From a bird’s eyes perspective, the step mappingρ rotates the bits in a lane for
a certain amount of bits, called offset, whereas the step mappingπ permutes the
position of the lanes. The two mappings are visualized in Figures 6.9 for step
mappingρ (with b = 200 instead ofb = 1600) and 6.10 for step mappingπ. When
combined, the two mappings can be mathematically expressed as

lane[y, 2x+ 3y] = lane[x, y]
x→֒ r[x, y]

or

A′[y, 2x+ 3y, ·] = A[x, y, ·] x→֒ r[x, y]

wherer[x, y] refers to the offset value for the lane withx-coordinatex and y-
coordinatey. The respective offset values are summarized in Table 6.8. Note that
the rotation of mappingρ is defined by

x→֒ r[x, y], whereas the permutation of
mappingπ is defined by the change of thex- andy-coordinates, i.e., the newx-
coordinate is the oldy and the newy-coordinate is2x+3y. For example,lane[3, 1]
is rotated by 55 positions, and the resulting word becomeslane[1, 4] (because
2 · 3 + 3 · 1 ≡ 6 + 3 ≡ 9 mod 5 = 4).

An algorithm that can be used to computeρ and turnA intoA′ is sketched in
Algorithm 6.14. In the first line of the algorithm,lane[0, 0] = A[0, 0, ·] is copied to
the same place inA′. The(x, y)-pair is then initialized to(1, 0), and this value-pair
is fed into the for-loop (that loops for each of the remaining 24 lanes). In each step

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

158 Cryptography 101: From Theory to Practice

Table 6.8
The Offset Values Used by the Step Mappingρ

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 43
y = 1 55 20 36 44 6
y = 0 28 27 0 1 62
y = 4 56 14 18 2 61
y = 3 21 8 41 45 15

Algorithm 6.14 Step mappingρ.

(A)

for z = 0 to w − 1 doA
′[0, 0, z] = A[0, 0, z]

(x, y) = (1, 0)
for t = 0 to 23 do

for z = 0 to w − 1 doA′[x, y, z] = A[x, y, (z − (t+ 1)(t + 2)/2) mod w]
(x, y) = (y, (2x+ 3y) mod 5)

(A′)

of the loop, the offset of Table 6.8 is computed and applied to the appropriate lane.
Finally, a new(x, y)-pair is computed for the next step of the loop.

Algorithm 6.15 Step mappingπ.

(A)

for x = 0 to 4 do
for y = 1 to 4 do

for z = 0 to w − 1 doA
′[x, y, z] = A[(x+ 3y) mod 5, x, z]

(A′)

Similarly, an algorithm that can be used to computeπ is sketched in Algorithm
6.15. As mentioned above, this step mapping implements a permutation of the lanes
(and otherwise leaves the lanes unchanged). As a numerical example,A′[2, 2, ·] =
A[(2 + 3 · 2) mod 5, 2, ·] = A[3, 2, ·], and this means thatlane[3, 2] is mapped
to lane[2, 2]. This corresponds to the first bullet in Figure 6.10 (on the upper left
corner).

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

Cryptographic Hash Functions 159

Figure 6.10 The step mappingπ. (c© keccak.team)

6.4.5.3 Step Mappingχ (Chi)

The step mappingχ also operates on lanes. More specifically, it combineslane[x, y]
with lane[x+ 1, y] andlane[x+ 2, y], i.e., two adjacent lanes with regard to thex-
coordinate, with the Boolean NOT (¬) XOR (⊕), and AND (∧) operators. As such,
it is the only nonlinear mapping in thef -function of KECCAK. It is illustrated in
Figure 6.11 (for a single row) and can be formally defined as follows:

A′[x, y, ·] = A[x, y, ·]⊕ ((¬A[x + 1, y, ·]) ∧A[x+ 2, y, ·])

Note that in some descriptions ofχ, the NOT (¬) operator is replaced by bitwise
adding 1 modulo 2 toA[x+1, y, ·] or writing the bitwise complementA[x+1, y, ·].
These notations are all equivalent. An algorithm that can be used to computeχ and
turnA intoA′ is sketched in Algorithm 6.16.

Algorithm 6.16 Step mappingχ.

(A)

for x = 0 to 4 do
for y = 1 to 4 doA

′[x, y, ·] = A[x, y, ·]⊕ ((¬A[x + 1, y, ·]) ∧A[x+ 2, y, ·])
(A′)

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

160 Cryptography 101: From Theory to Practice

Figure 6.11 The step mappingχ. (c© keccak.team)

Table 6.8
The 24 Round Constants Employed by SHA-3

RC[0] 0x0000000000000001 RC[12] 0x000000008000808B
RC[1] 0x0000000000008082 RC[13] 0x800000000000008B
RC[2] 0x800000000000808A RC[14] 0x8000000000008089
RC[3] 0x8000000080008000 RC[15] 0x8000000000008003
RC[4] 0x000000000000808B RC[16] 0x8000000000008002
RC[5] 0x0000000080000001 RC[17] 0x8000000000000080
RC[6] 0x8000000080008081 RC[18] 0x000000000000800A
RC[7] 0x8000000000008009 RC[19] 0x800000008000000A
RC[8] 0x000000000000008A RC[20] 0x8000000080008081
RC[9] 0x0000000000000088 RC[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0x000000008000000A RC[23] 0x8000000080008008

6.4.5.4 Step Mappingι (Iota)

Finally, the step mappingι is simple at first glance: It adds modulo 2 a round-
dependent constantRC[ir] (where ir refers to the round number or index) to
lane[0, 0] and leaves all other 24 lanes unchanged. The constants for the 24 rounds
are summarized in Table 6.8. Using these constants, the mappingι is defined as
follows:

A′[0, 0, ·] = A[0, 0, ·]⊕ RC[ir]

An algorithm that can be used to computeι is sketched in Algorithm 6.17. Note that
this algorithm takes an additional inputir that refers to the round index. Also note

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

Cryptographic Hash Functions 161

that the difficulty of the algorithm mainly results from the wayRC[ir] is constructed
(i.e., the second part of Algorithm 6.17). This construction is more involved and
uses an auxiliary functionrc that is outlined in Algorithm 6.18. This algorithm
implements an LFSR that takes as input an integert (that is internally reduced
modulo 255) and generates as output a bitrc(t). Again, if this algorithm is applied
with the parametrization of KECCAK or SHA-3, i.e.,l = 6 andnr = 24, then the
resulting valuesRC[0], . . . , RC[23] are the ones summarized in Table 6.8.

Algorithm 6.17 Step mappingι.

(A, ir)

for x = 0 to 4 do
for y = 1 to 4 do

for z = 0 to w − 1 do
A′[x, y, z] = A[x, y, z]

RC = 0w

for j = 0, . . . , l doRC[2j − 1] = rc(j + 7ir)
for z = 0 to w − 1 doA′[0, 0, z] = A′[0, 0, z]⊕ RC[z]

(A′)

Algorithm 6.18 Auxiliary function rc.

(t)

if t mod 255 = 0 then return 1
R = 10000000
for i = 1 to t mod 255 do

R = 0 ‖ R
R[0] = R[0]⊕ R[8]
R[4] = R[4]⊕ R[8]
R[5] = R[5]⊕ R[8]
R[6] = R[6]⊕ R[8]
R = Trunc8[R]

(R[0])

6.4.5.5 From KECCAK to SHA-3

Given a stateA and a round indexir, the round function Rnd refers to the
transformation that results from applying the step mappingsθ, ρ, π, χ, andι in a

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

162 Cryptography 101: From Theory to Practice

particular order:43

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir)

In general, the KECCAK-p[b, nr] permutation consists ofnr iterations of the round
function Rnd as specified in Algorithm 6.19. The algorithm takes ab-bit stringS
and a number of rounds (nr) as input parameters and computes anotherb-bit string
S′ as output parameter. The algorithm is fairly simple:S is converted to the state
A, nr round functions Rnd are applied to the state, and the resulting state is finally
converted back to the output stringS′. Strictly speaking, KECCAK-p[b, nr] refers to
a family of permutation, namely one for each pair of parametersb andnr.

Algorithm 6.19 KECCAK-p[b,nr].

(S, nr)

convertS into stateA
for ir = 2l + 12− nr to 2l + 12 − 1 doA = Rnd(A, ir)
convertA into b-bit stringS′

(S′)

The KECCAK-f family of permutations is the specialization of the KECCAK-p
family to the case wherenr = 12 + 12l, i.e.,

KECCAK-f [b] = KECCAK-p[b, 12 + 2l]

This means that the KECCAK-p[1600, 24] permutation that underlies the six SHA-3
functions is equivalent to KECCAK-f [1600].

During the SHA-3 competition, the security of KECCAK was challenged
rigorously. Nobody found a possibility to mount a collision attack that is more
efficient than brute-force. This has not changed since then, and hence people feel
confident about the security of SHA-3. But people also feel confident about the
security of the cryptographic hash functions from the SHA-2 family.44 So whether
SHA-3 will be successfully deployed in the field is not only a matter of security.
There may be other reasons to stay with SHA-2 or move to SHA-3 (or even to any
other cryptographic hash function). The effect of these reasons is difficult to predict,
and hence it is hard to tell whether SHA-3 will be successful in the long term and
how long this may take.

43 As mentioned above, the step mappingθ must be applied first, whereas the order of the other step
mappings is arbitrary.

44 A summary of the security of SHA-1, SHA-2, and SHA-3 is given in appendix A.1 of [25].

Rev
isi

on
 of

 S
ec

tio
n 6

.4.
5 f

rom
 "C

ryp
tog

rap
hy

 10
1:

Fr
om

 Th
eo

ry
to

Prac
tic

e"
 w

ritt
en

 by
 R

olf
 O

pp
lig

er

	SHA3intro
	SHA3

