CRYPTO
GRAPHY

101

FROM THEORY
TO PRACTICE

ROLF OPPLIGER

ISBN: 978-1-63081-846-3

The following text is a revision of Section 6.4.5 taken from the book “Cryptography 101:
From Theory to Practice” that was written by Rolf Oppliger and published by Artech
House in June 2021 (in its Information Security and Privacy book series)

148 Cryptography 101: From Theory to Practice

6.4.5 KEeccak and the SHA-3 Family

As mentioned in Section 6.3,8cAk®® is the algorithm selected by the U.S. NIST

as the winner of the public SHA-3 competition in 20¥2t is the basis for FIPS

PUB 202 [25] that complements FIPS PUB 180-4 [19], and it specifies the SHA-3
family that comprises four cryptographic hash functions and two extendable-output
functions (XOFs). While a cryptographic hash function outputs a value of fixed
length, an XOF has a variable-length output, meaning that its output may have any
desired length. XOFs may have many potential applications and use cases, ranging
from pseudorandomness generation and key derivation, to message authentication,
authenticated encryption, and stream ciphers. Except from their different output
lengths, cryptographic hash functions and XOFs look very similar and may even
be based on the same construction (as exemplified here).

e The four SHA-3 cryptographic hash functions are named SHA3-224, SHA3-
256, SHA3-384, and SHA3-512. As'in the case of SHA-2, the numerical
suffixes indicate the lengths of the respective hash vaéftes.

e The two SHA-3 XOFs are named SHAKE128 and SHAKEZ3%Gyhere
the numerical suffixes refer to the security levels (in terms of key length
equivalence). SHAKE128 and SHAKE?256 are the first XOFs that have been
standardized by NIST or any other standardization body.

The SHA-3 hash functions and XOFs employ different padding schemes (as
addressed below). In December 2016, NIST released SP 808185 specifies
complementary functions derived from SHA-3. In particular, it specifies four types
of SHA-3-derived functions: cSHAKE, KMAC, TupleHash, and ParallelHash. The
acronym cSHAKE stands for “customizable SHAKE,” and it refers to a SHAKE
XOF that can be customized using a function name and a customization bit string.
KMAC is a keyed MAC construction that is based ore&cAK or cSHAKE,
respectively (Section 10.3.2). Finally, and as their names suggest, TupleHash is
a SHA-3-derived function that can be used to hash a tuple of input strings, and
ParallelHash can be used to take advantage of the parallelism available in modern
processors (using a particular block size). The details of these SHA-3-derived
functions are not further addressed here; the details can be found in the NIST SP
referenced above.

36 http://keccak.team.

37 http://csre.nist.gov/groups/ST/hash/sha-3/steaBdardization.html.

38 The SHA-2 hash functions are named SHA-224, SHA-256, SHA-384, and SHA-512.
39 The acronym SHAKE stands for “Secure Hash Algorithm with Keccak.”

40 https://nvipubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf

Cryptographic Hash Functions 149

Unlike all cryptographic hash functions addressed so fac&ak and the
SHA-3 hash functions do not rely on the Merkle-Damgard construction, but on
a so-calledsponge constructidh that is based on a permutation operating on a
data structure known as ttetate The state, in turn, can either be seen as a (one-
dimensional) bitstrings' of lengthb or a three-dimensional array[z, y, z] of bits
with appropriate values fat, y, andz (i.e.,zyz < b).

y, Z
4 P state
& >
y
P plane 4 slice
> & >
X
y z
row 4 column Pl lane
* ¢ [4
X
bit

Figure 6.4 The KECCAK state and its decompositioC) keccak.team).

41 http://sponge.noekeon.org.

150 Cryptography 101: From Theory to Practice

The KeEcCCAK state represented as an arrAyand its decomposition (as
addressed below) are illustrated in Figure 6.4. This figure is used in this book
with kind permission from the developers oEKcak under a Creative Commons
Attribution 4.0 International License (together with Figures 6.8—6%11).

In the case of SHA-3) = 1600, 0 < z,y < 5, and0 < z < w (with
w = 2! = 64 for | = 6 as addressed below). Consequently, the state is either a
string.S or a(5 x 5 x 64)-array A of 1600 bits (as depicted in Figure 6.4). For all
0 <z,y <5and0 < z < w, the relationship betweesiand A is as follows:

Alz,y, 2] = Slw(5y + 2) + 2]

Following this equation, the first elemeAt[0, 0, 0] translates ta&[0], whereas the
last elementA[4, 4, 63] translates t&6[64(5 - 4) +4) + 63] = S[64 - 24 + 63] =
S[1599].

Referring to Figure 6.4, there are several possibilities to decompodé
one fixes all values on the-, y-, and z-axes, then one refers to a sindli; that
is, bitlx,y, z] = Alz,y, z]. If one fixes the values on thg andz-axes and only
considers a variable value for theaxis, then one refers toraw; that is,row(y, z] =
Al y,z]. If one does something similar and consider a variable value fogthe
axis (z-axis), then one refers to@lumn(lane); that is,column|z, z] = Alz, -, 2]
(lane[z,y] = Alz,y,-]). Lanes are important in the design oEECAK because
they can be stored in a word and a 64-bit register of a modern processor.

If one fixes the values on thg-axis and consider variables value for the
and z-axes, then one refers toane planely] = A[,,y,-]. Again, one can do
something similar and consider a fixed value for thaxis (z-axis) to refer to alice
(shee), slice[z] = Al -, 2] (sheet[z] = Alx, -, -]). Some of these terms are used to
describe the working principles ofgCcak and its step mappings.

If one wants to converA into a stringS, then the bits ofA are concatenated
as follows to forms:

S = A =plane[0] || plane[l] || ... || plane[4]
= lanel0,0] || lane[1,0] || ... || lane[4,0] |
lane[0,1] || lane[1,1] || ... || lane[4,1] ||
lanel0,2] || lane[1,2] || ... || lane[4,2] ||
lanel0,3] || lane[1,3] || ... || lane[4, 3] ||
lanel0,4] || lane[1,4] || ... || lane[4, 4]

)

42 https://keccak.team/figures.html.

Cryptographic Hash Functions 151

= bit[0,0,0] || bit[0,0,1] || bit[0,0,2] || ... || bit[0,0,63] |
bit[1,0,0] || bit[1,0,1] || bit[1,0,2] | ... || bit[1,0,63] ||
bit[2,0,0] || bit[2,0,1] || bit[2,0,2] | ... || bit[2,0,63] |
bit[3,4,0] || bit[3,4,1] || bit[3,4,2] || ... || bit[3,4,63] |
bit[4,4,0] || bit[4,4,1] || bit[4,4,2] | ... || bit[4,4,63)]
Keccak

Sponge construction

m »| Preprocessing [—— il o Absorbing | | Squeezing Yo¥i Yo
phase phase

\

Figure 6.5 - KECCAK and the sponge construction.

The working principles of kkccak and the sponge construction (used by
KEcCcAK) are overviewed in Figure 6.5. A messagethat is input on the left
side is preprocessed and properly padded (as explained below) to form a series of
n message blocksg, z1,...,x,_1. These blocks are then subject to the sponge
construction that culminates in a series of output blagk%, y2, . . . on the right
side. One of the specific features oEBCAK is that the number of output blocks
is arbitrary and can be configured at will. In the case of a SHA-3 hash function,
for example, only the first output blogk is required and from this block only the
least significant bits are used (the remaining bits are discarded). But in the case of
a SHA-3 XOF (i.e., SHAKE128 or SHAKE256), any number of output blocks may
be used.

As its name suggests, a sponge construction can be used to absorb and squeeze
bits. Referring to Figure 6.5, it consists of two phases:

1. In theabsorbingor input phasethen message blocksy, z1,...,z,_1 are
consumed and read into the state.

152 Cryptography 101: From Theory to Practice

2. In the squeezingor output phasgan outputyg, y1, ¥y, . .. of configurable
length is generated from the state. IEEKCAK is used as a cryptographic hash
function, then typically onlyy, is used, and frorg, only the least significant
bits (and the remaining bits gf, are discarded). But if KCCAK is used as an
XOF, then a series of output blocks, y1, y2, . . . is needed.

The same functioif (known as KECCAK f-function or f-permutation) is used
in either of the two phases. The following parameters are used to configure the input
and output sizes as well as the security &dCAKk:

e The parameteb refers to the state width (i.e., the bitlength of the state). For
KECCAK, it can take any valué = 5-5-2! = 25-2' forl = 0,1,...,6
(i.e., 25, 50, 100, 200, 400, 800, or 1600 bits), but the first two values are only
toy values that should not be used in practice. For SHA-3, it is required that
I = 6, and, hence) = 25 - 26 = 25 - 64 = 1600 bits. Sinceb = 5 - 5 - 2/,
the state can be viewed as a cuboid with width 5 (representing-toés),
height 5 (representing thg-axis), and lengthv = 2! or—as in the case of
SHA-3—26 = 64 (representing the-axis). Anyway,b is the sum of- andc
(i,e.,b=r+c).

e The parameter is called thebit rate (or rate in short). Its value is equal to
the length of the message blocks, and hence it determines the number of input
bits that are processed simultaneously. This also means that it stands for the
speed of the construction.

e The parametet is called thecapacity Its value is equal to the state width
minus the rate, and it refers to the double security level of the construction (so
a construction with capacity 256 has a security level of 128).

Table 6.6
The KECccAK Parameter Values for the SHA-3 Hash Functions

Hash Function n b r c w

SHA3-224 224 1600 1152 448 64
SHA3-256 256 1600 1088 512 64
SHA3-384 384 1600 832 768 64
SHA3-512 512 1600 576 1024 64

The KEccak parameter values for the SHA-3 hash functions are summarized
in Table 6.6. Note thab andw are equal to 1600 and 64 in all versions of SHA-
3. Also note that there is a trade-off between the ratend the capacity. They

Cryptographic Hash Functions 153

must sum up té. But whethen- or ¢ is made large depends on the application. For
any security level it makes sense to selectthat is twice as large and to use the
remaining bits for-. If, for example, one wants to achieve a security level of 256,
thenc should bes12 and the remaining600 — 512 = 1088 bits determine:.

Before a message: can be processed, it must be padded properly (to make
sure that the input has a bitlength that is a multiple)oiKECCAK uses a relatively
simple padding scheme known emsiltirate padding It works by appending ta: a
predetermined bit string, a one, a variable number of zeros, and a terminating one.
The number of zeros is chosen so that the total length of the resulting bit string is a
multiple of . This can be expressed as follows:

Paddingm) = m || p || 10*1
~————
multiple of

Note that the string* = 0. .. 0 can also be empty, meaning that it may comprise no
zeros at all. Also note that the valuepfiepends on the mode in whichEKCAK is

used. When using it as a hash function (and hence as a SHA-2 replacemefa)s

to the 2-bit string 01. Contrary to that, when using it to generate a variable-length
output,p refers to the 4-bit string 1111. The subtleties of these choices are provided
in [25]. Anyway, the minimum number of bits appendedionvhen used as a hash
function is 4 (i.e., 0111), whereas the maximum number of bits appended &

(if the last message block consistsof 1 bits). In the other case (i.e., when used to
generate a variable-length output), at least 6 bits and atimeStits are appended.

In either case, the result of the padding process is a series of messagelocks
(: =0,1,...) each of which has a length efbits.

X

XO X1 Xz n-1

N SN

Figure 6.6 The KEccAk absorbing phase.

As mentioned above, the sponge construction used bgdak is based on
a permutation of the state. This permutation is calfefdinction or f-permutation,

154 Cryptography 101: From Theory to Practice

and it permutes th2® possible values of the state. As illustrated in Figures 6.6 and
6.7, the samg-function is used in both the absorbing and squeezing phase. It takes
b = r + ¢ bits as input and generates an output of the same length. Internally, the
f-function consists of.,. round functions with the same input and output behavior,
meaning that they all takk bits as input and generakebits of output. Remember
that/ determines the state width accordingte- 25 - 2! (and that SHA-3 uses the
fixed valued = 6 and hencé = 1600). The valud also determines the number of
rounds according to the following formula:

n, =12+ 21

So the possible state widths 25, 50, 100, 200, 400, 800, and 1600 come along with
respective numbers of rounds: 12, 14, 16, 18, 20, 22, and 24. The longer the state
width, the larger the number of rounds (to increase the security level). As SHA-3
fixes the state width to 1600 bits, the number of rounds is also fixed to 24 (i.e.,
n, = 24).

Yo Y, Y,

Figure 6.7 The KECcCAK squeezing phase.

In each round, a sequence of five step mappings is executed, where each step
mapping operates on tHebits of the state. This means that each step mapping
takes a state arraj as input and returns an updated state afkays output. The
five step mappings are denoted by Greek letters: thBtalo (o), pi (7), chi (x),
and iota (). While the first step mapping must be applied first, the order of the
other step mappings is arbitrary and does not matter gaamt = are often defined
simultaneously).

The five step mappings are explained next. They are relatively simple to
capture visually, but difficult to capture mathematically. We try it anway. They all
map a 3-dimensional state arrAyto A’, where each array comprisies- 1600 bits.
Thexz—, y—, andz-axes are illustrated in Figure 6.4. As shown in Table 6.7, the the

Cryptographic Hash Functions 155

Table 6.7
The (z, y)-Coordinates of the Bits in a Slice

32| 42| 02| 12| 22
B | 41| O @1y 21
30| 40) | 0,0) | 1,0 | (2,0
34| 44| 04| 14| 29
B3| 43| 03| 1,3) | (2,3

x— andy—axes are labeled in an unusual manner: Starting from the origin, the axes
are labeled 3, 4, 0, 1, and 2 (instead of 0, 1, 2, 3, and 4). S@tlez)-bitis in the
middle of slice[z], whereas the labeling of theaxis is normal.

The step mappings mainly operate on-lanes, uehit words that can be
processed in a register on a modern processor. Agair|zx, y] refers toA [z, y,],
i.e., all bits of the state that have the safmey)-coordinates. The (mathematical)
operations that are used include the addition and multiplication modulo 2, i.e., the
bitwise addition and multiplication i&*F'(2). This suggests that the addition is equal
to the Boolean XOR operatiom) and the multiplication is equal to the Boolean
AND operation (). With the exception of the round constants [RCused in step
mapping., the step mappings are the same in all rounds.

yy 2| ;

AR e S C S #

&« >
X

Figure 6.8 The step mapping. (© keccak.team)

156 Cryptography 101: From Theory to Practice

6.4.5.1 Step Mapping (Theta)

The step mapping is visualized in Figure 6.8. Each bit in the state is replaced with
the modulo 2 sum of itself and the bits of two adjacent columns. More specifically,
for bit A[xo, yo, 20], the z-coordinate of the first column i€y — 1) mod 5, with

the samez-coordinatezg, while the z- and z-coordinates of the second column
are (zg + 1) mod 5 and (29 — 1) mod w. Consequently, the mappir®gcan be
mathematically expressed as follows:

4
AI[ICO, Yo, Zo] = A[ﬂfoayo, Zo] b @A[(ﬂfo - 1) mod 5, y, ZO]

y=0
4
@ @A[(xo +1) mod 5,y, (20 — 1) mod w]

y=0

Algorithm 6.13 Step mapping.

(A)

for x =0to4do
for z=0tow — 1do
Clz,z] = Alz;0,2] ® Az, 1,2] ® Alz,2,2] ® Alz, 3, 2] ® Az, 4, 2]
= @3:0 Alz,y, 2]
for x =0to4do
for z=0tow — 1do
Dlz, z] = C[(z — 1) mod 5, 2] & C[(z + 1) mod 5, (z — 1) mod w]
for =0to4do
for y =0to4 do
for z=0tow —1do
Allz,y,2z] = Alzx,y, 2] § D[z, 2]

(A7)

An algorithm that can be used to compdtand turnA into A’ is sketched
in Algorithm 6.13. In this notation, {@, z] and Oz, z] refer to intermediate values
that refer to the modulo 2 sum of the bits in a column (in the casdaf4) and the
modulo 2 sum of the bits in two columns (in the case of D]}, Mote that Algorithm
6.13 can be made more efficient by processing the bits of a lane simultaneously (not
addressed here).

Cryptographic Hash Functions 157

W=y s
SR
o
o W%

Figure 6.9 The step mapping. (© keccak.team)

6.4.5.2 Step Mappings (Rho) andr (Pi)

From a bird’s eyes perspective, the step mappingtates the bits in a lane for

a certain amount of bits, called offset, whereas the step mappipgrmutes the
position of the lanes. The two mappings are visualized in Figures 6.9 for step
mappingp (with b = 200 instead ofb = 1600) and 6.10 for step mapping When
combined, the two mappings can be mathematically expressed as

lanely, 2z + 3y] = lane[z,y] S v, y]
or
A'ly, 2z + 3y, = Az, y,] S rlz,y]

wherer|z,y] refers to the offset value for the lane withcoordinatex and y-
coordinatey. The respective offset values are summarized in Table 6.8. Note that
the rotation of mapping is defined by@ r[z,y], whereas the permutation of
mappingr is defined by the change of the andy-coordinates, i.e., the new
coordinate is the olg and the newy-coordinate i2x + 3y. For examplelane[3, 1]
is rotated by 55 positions, and the resulting word becomes|1, 4] (because
2:343-1=6+3=9modb=4).

An algorithm that can be used to compptand turnA into A’ is sketched in
Algorithm 6.14. In the first line of the algorithnigne[0, 0] = A[0, 0, -] is copied to
the same place iA’. The(z, y)-pair is then initialized tq1, 0), and this value-pair
is fed into the for-loop (that loops for each of the remaining 24 lanes). In each step

158 Cryptography 101: From Theory to Practice

Table 6.8
The Offset Values Used by the Step Mappjng

r=3 z=4 x=0 zxz=1 zxz=2
y=2 25 39 3 10 43
y=1 55 20 36 44 6
y=20 28 27 0 1 62
y=4 56 14 18 2 61
y=3 21 8 41 45 15

Algorithm 6.14 Step mappingp.

(A)
forz=0tow — 1doA’[0,0, 2] = A[0,0, 2]
(z,9) = (1,0)

for ¢t =0to 23 do
forz=0tow — 1doA’[z,y, 2] = Alz,y,(z — (t+ 1)(t + 2)/2) mod w]
(z,y) = (y, (22 4 3y) mod 5)

(A)

of the loop, the offset of Table 6.8 is computed and applied to the appropriate lane.
Finally, a new(x, y)-pair is computed for the next step of the loop.

Algorithm 6.15 Step mappingr.

(A)

for © =0to4do
for y=1to4 do
for z=0tow — 1doA’[z,y,z] = A[(z + 3y) mod 5, z, 2]

(A')

Similarly, an algorithm that can be used to compuitie sketched in Algorithm
6.15. As mentioned above, this step mapping implements a permutation of the lanes
(and otherwise leaves the lanes unchanged). As a numerical exafif@e2, -] =
Af(2+4+3-2)mod 5,2,] = AJ[3,2,], and this means thdtne[3, 2] is mapped
to lane[2,2]. This corresponds to the first bullet in Figure 6.10 (on the upper left
corner).

Cryptographic Hash Functions 159

° Py X
[’ Ly
D) NNOIN GO
P Py ‘ P
< o) @ X
x| & x hd
o ax |\
: D ®
WL R
o [¥ ® Al

Figure 6.10 The step mapping-. (© keccak.team)

6.4.5.3 Step Mapping (Chi)

The step mapping also operates on lanes. More specifically, it combines|z, y|
with lane[z + 1, y] andlane[z +2,y], i.e., two adjacent lanes with regard to the
coordinate, with the Boolean NOFJ XOR (), and AND (A\) operators. As such,
it is the only nonlinear mapping in thé-function of KEccak. It is illustrated in
Figure 6.11 (for a single row) and can be formally defined as follows:

Al[ma Y,] = A[xvya] D ((‘!A[l‘ +1,v,]) N A[‘r +2,v,])

Note that in some descriptions gf the NOT () operator is replaced by bitwise
adding 1 modulo 2 ta\ [+ 1, , -] or writing the bitwise complemeX [z + 1, v, -].
These notations are all equivalent. An algorithm that can be used to comjpatd
turn A‘into A’ is sketched in Algorithm 6.16.

Algorithm 6.16 Step mapping.

(A)

for x =0to4do
for Yy= lto4 dOA/[%% } = A[Cb,y, } D ((_‘A[‘T + 17y7]) A A[‘T + 2vy7])

(A)

160 Cryptography 101: From Theory to Practice

& & & 5o

TI117

Figure 6.11 The step mapping. (©© keccak.team)

Table 6.8
The 24 Round Constants Employed by SHA-3

RCI0] 0x0000000000000001 RC[12] 0x000000008000808B
RC[1] 0x0000000000008082 ~RC[13] 0x800000000000008B
RC[2] 0x800000000000808A - RC[14] 0x8000000000008089
RC3] 0x8000000080008000 RC[15] 0x8000000000008003
RC[4] 0x000000000000808B RC[16] 0x8000000000008002
RC[5] 0x0000000080000001 RC[17] 0x8000000000000080
RC6] 0x8000000080008081 RC[18] 0x000000000000800A
RCI[T] 0x8000000000008009 RC[19] 0x800000008000000A
RC8] 0x000000000000008A RC[20] 0x8000000080008081
RC9] 0x0000000000000088 R(C[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0x000000008000000A RC[23] 0x8000000080008008

6.4.5.4 Step Mapping(lota)

Finally, the step mapping is simple at first glance: It adds modulo 2 a round-
dependent constarRC|[i,] (wherei, refers to the round number or index) to
lanel0, 0] and leaves all other 24 lanes unchanged. The constants for the 24 rounds
are summarized in Table 6.8. Using these constants, the mapjéndefined as
follows:

A'[0,0,-] = A[0,0,] & RCi,]

An algorithm that can be used to compuis sketched in Algorithm 6.17. Note that
this algorithm takes an additional inpitthat refers to the round index. Also note

Cryptographic Hash Functions 161

that the difficulty of the algorithm mainly results from the wA¢’[i,] is constructed
(i.e., the second part of Algorithm 6.17). This construction is more involved and
uses an auxiliary functiome that is outlined in Algorithm 6.18. This algorithm
implements an LFSR that takes as input an integéhat is internally reduced
modulo 255) and generates as output abit). Again, if this algorithm.is applied
with the parametrization of KCCAK or SHA-3, i.e.,l = 6 andn, = 24, then the
resulting valueRC10], . . ., RC[23] are the ones summarized in Table 6.8.

Algorithm 6.17 Step mapping.

(A, ir)

for z =0to4 do
for y=1to4 do
for z=0tow — 1do
Allz,y, 2] = Alz, vy, 2]
RC = 0%
for 5 =0,...,ldoRC[27 — 1] = rc(j + Tir)
for z=0tow —1do A’[0,0,2] = A’[0,0, 2] ® RC|z]

(A')

Algorithm 6.18 Auxiliary function rc.

()
if t mod 255 = 0 then return 1

R = 10000000

for ¢ = 1tot mod 255 do
R=0| R
R[0] = RI[0] ® R[8]
R[4] = R[4] @ R[]
R[5] = RI[5] ® R[8]
R[6] = RI[6] ® R[]
R = Trung|[R)]

(R[0])

6.4.5.5 From KccAkto SHA-3

Given a stateA and a round index,, the round function Rnd refers to the
transformation that results from applying the step mappihgs =, x, and: in a

162 Cryptography 101: From Theory to Practice

particular ordef®

Rnd(A, i,) = u(x(m(p(0(A)))), ir)

In general, the Kccak-p[b, n,.| permutation consists of,. iterations of the round
function Rnd as specified in Algorithm 6.19. The algorithm takeshdt string .S

and a number of rounds{) as input parameters and computes anobHat string

S’ as output parameter. The algorithm is fairly simpfeis converted to the state

A, n, round functions Rnd are applied to the state, and the resulting state is finally
converted back to the output strisg. Strictly speaking, kkccak-p[b, n,] refers to

a family of permutation, namely one for each pair of paramétarsin.,..

Algorithm 6.19 KECCAK-p[b, nr].

(Sv nr)

convertS into stateA
for i, =21+ 12 —n,t02l+ 12 —1do A = Rnd(A, ;)
convertA into b-bit string S’

(8"

The Keccak-f family of permutations is the specialization of the &CAKk-p
family to the case where, = 12 + 121, i.e.,

KECCAK-f[b] = KECCAK-p[b, 12 + 2I]

This means that the BCCAK-p[1600, 24] permutation that underlies the six SHA-3
functions is equivalent to KCcAk-f[1600].

During the SHA-3 competition, the security ofel€cAK was challenged
rigorously. Nobody found a possibility to mount a collision attack that is more
efficient than brute-force. This has not changed since then, and hence people feel
confident about the security of SHA-3. But people also feel confident about the
security of the cryptographic hash functions from the SHA-2 fafilgo whether
SHA-3 will be successfully deployed in the field is not only a matter of security.
There may be other reasons to stay with SHA-2 or move to SHA-3 (or even to any
other cryptographic hash function). The effect of these reasons is difficult to predict,
and hence it is hard to tell whether SHA-3 will be successful in the long term and
how long this may take.

43 As mentioned above, the step mappthigiust be applied first, whereas the order of the other step
mappings is arbitrary.
44 A summary of the security of SHA-1, SHA-2, and SHA-3 is given in appendix A.1 of [25].

	SHA3intro
	SHA3

