Cryptography 101: From Theory to Practice

Chapter 12 – Key Establishment

Rolf Oppliger

March 17, 2022

Terms of Use

- This work is published with a CC BY-ND 4.0 license (⊚④⑤)
 - CC = Creative Commons (ⓒ)
 - BY = Attribution ()
 - ND = No Derivatives (⑤)

whoami

rolf-oppliger.ch
rolf-oppliger.com

- Swiss National Cyber Security Centre NCSC (scientific employee)
- eSECURITY Technologies Rolf Oppliger (founder and owner)
- University of Zurich (adjunct professor)
- Artech House (author and series editor for information security and privacy)

Reference Book

© Artech House, 2021 ISBN 978-1-63081-846-3

https://books.esecurity.ch/crypto101.html

Challenge Me

Part III PUBLIC KEY CRYPTOSYSTEMS

Outline

12. Key Establishment

- 1 Introduction
- 2 Cryptographic Systems
- 3 Random Generators
- 4 Random Functions
- One-Way Functions
- 6 Cryptographic Hash Functions
- 7 Pseudorandom Generators
- 3 Pseudorandom Functions
- 9 Symmetric Encryption
- 10 Message Authentication
- 11 Authenticated Encryption
 - 13 Asymmetric Encryption
- 14 Digital Signatures
- 15 Zero-Knowledge Proofs of Knowledge
- 16 Key Management
- 17 Summary
- 18 Outlook

- 12.1 Introduction
- 12.2 Key Distribution
- 12.3 Key Agreement
- 12.4 Quantum Cryptography
- 12.4 Final Remarks

12.1 Introduction

- The establishment of keys is a major problem in secret key cryptography
- It represents the Achilles' heel for its large-scale deployment
- Two approaches
 - Key distribution center (KDC), such as Kerberos
 - Key establishment protocols

12.1 Introduction

- Types of key establishment
 - Key distribution
 - Key agreement (aka key exchange)

12.2 Key Distribution — Merkle's puzzles

- In 1975, Ralph C. Merkle proposed an idea that predates (but is conceptually similar to) public key cryptography
- It is theoretically interesting but not practical

12.2 Key Distribution — Shamir's three-pass protocol

 In 1980, Adi Shamir proposed a key distribution protocol that employs commutative encryption

Table 12.2
Shamir's Three-Pass Protocol (error in the printed edition of the book)

Α		В
(n)		(n)
$k \stackrel{r}{\longleftarrow} K$		
	$\xrightarrow{k_1=E_{k_A}(k)}$	
	$\stackrel{k_2=E_{k_B}(E_{k_A}(k))}{\longleftarrow}$	
$D_{k_{\!A}}(k_2)$		
	$\xrightarrow{k_3=E_{k_B}(k)}$	
		$D_{k_B}(k_3)$
(k)		(k)

12.2 Key Distribution — Shamir's three-pass protocol

- An additive stream cipher, such as the one-time pad, yields a commutative encryption
- In this case, however, all encryptions cancel themselves out and the protocol gets totally insecure
- If r_A is the bit sequence used by A to compute k_1 and k_3 , and r_B is the bit sequence used by B to compute k_2 , then k_1 , k_2 , and k_3 can then be expressed as

$$k_1 = r_A \oplus k$$

 $k_2 = r_B \oplus k_1 = r_B \oplus r_A \oplus k$
 $k_3 = r_A \oplus k_2 = r_A \oplus r_B \oplus r_A \oplus k = r_B \oplus k$

12.2 Key Distribution — Shamir's three-pass protocol

- These are the values an adversary can observe in a passive (wiretapping) attack
- The adversary can add k_1 and k_2 modulo 2 to retrieve r_B

$$k_1 \oplus k_2 = r_A \oplus k \oplus r_B \oplus r_A \oplus k = r_B$$

■ This value can then be added modulo 2 to k_3 to determine k

$$r_B \oplus k_3 = r_B \oplus r_B \oplus k = k$$

12.2 Key Distribution — Shamir's three-pass protocol

- The bottom line is that a perfectly secure symmetric encryption system is used, and yet the resulting key distribution protocol is totally insecure
- This suggests that the use of an additive stream cipher is inappropriate to instantiate the three-pass protocol
- Shamir suggested the use of modular exponentiation in \mathbb{Z}_p^* (instead of an additive stream cipher)
- The resulting three-pass protocol is known as Shamir's three-pass protocol (or Shamir's no key protocol)

12.2 Key Distribution — Shamir's three-pass protocol

■ Respective values for k_1 , k_2 , and k_3 :

$$k_{1} \equiv k^{e_{A}} \pmod{p}$$

$$k_{2} \equiv (k^{e_{A}})^{e_{B}} \equiv k^{e_{A}e_{B}} \pmod{p}$$

$$k_{3} \equiv ((k^{e_{A}})^{e_{B}})^{d_{A}}$$

$$\equiv ((k^{e_{A}})^{d_{A}})^{e_{B}}$$

$$\equiv (k^{e_{A}d_{A}})^{e_{B}}$$

$$\equiv k^{e_{B}} \pmod{p}$$

■ B can use d_B to retrieve k:

$$k \equiv (k^{e_B})^{d_B} \equiv k^{e_B d_B} \equiv k \pmod{p}$$

12.2 Key Distribution — Shamir's three-pass protocol

- In 1982, James L. Massey and Jim Omura proposed the use of a binary extension field \mathbb{F}_{2^m} for $m \in \mathbb{N}$ (instead of \mathbb{Z}_p^*)
- The resulting variant of Shamir's three-pass protocol is known as the Massey-Omura protocol
- It allows hardware implementations to be more efficient
- All known instantiations of Shamir's three-pass protocol employ modular exponentiation in one way or another (and therefore refer to public key cryptography)

12.2 Key Distribution — Asymmetric encryption-based key distribution protocol

 Asymmetric encryption-based key distribution is used in many Internet security protocols (e.g., IPsec/IKE, SSL/TLS, ...)

Table 12.3
An Asymmetric Encryption-based Key Distribution Protocol

Α		В
(pk_B)		(sk_B)
$k \stackrel{r}{\longleftarrow} \mathcal{K}$	$\xrightarrow{Encrypt(\mathit{pk}_{B},k)}$	
		$k = Decrypt(sk_B, Encrypt(pk_B, k))$
(k)		(k)

12.3 Key Agreement — Diffie-Hellman key exchange protocol

- In 1976, Whitfield Diffie and Martin Hellman published a landmark paper entitled "New Directions in Cryptography"
- The paper introduced the notion of public key cryptography and proposed a key agreement protocol
- The paper changed the field
- Diffie and Hellman won the ACM A.M. Turing Award in 2015

(c) 1977 Stanford News

12.3 Key Agreement — Diffie-Hellman key exchange protocol

- The Diffie-Hellman key exchange (exponential key exchange) protocol can be used by two entities that have no prior relationship to agree on a secret key by communicating over a public but authentic channel
- As such, its existence seems paradoxical at first sight

Table 12.4 Diffie-Hellman Key Exchange

(G,g)		(G,g)
$x_a \stackrel{r}{\longleftarrow} \mathbb{Z}_q^*$		$x_b \stackrel{r}{\longleftarrow} \mathbb{Z}_q^*$
$y_a = g^{x_a}$		$y_b = g^{x_b}$
	$\xrightarrow{y_a}$	
	$\stackrel{y_b}{\longleftarrow}$	
$k_{ab} = y_b^{x_a}$		$k_{ba} = y_a^{x_b}$
(k_{ab})		(k_{ba})

12.3 Key Agreement — Diffie-Hellman key exchange protocol

Toy example

- p = 23 is a safe prime, because 11 = (23 1)/2 is also prime
- $\mathbb{Z}_{23}^* = \{1, \dots, 22\}$ has a subgroup G that consists of the q = 11 elements 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, and 18
- g = 3 is a generator of this group (there are others)
- A randomly selects $x_a = 6$, computes $y_a = 3^6 \mod 23 = 16$, and sends this value to B
- B randomly selects $x_b = 9$, computes $y_b = 3^9 \mod 23 = 18$, and sends this value to A
- A computes $y_b^{x_a} = 18^6 \mod 23 = 8$
- B computes $y_a^{\bar{x}_b} = 16^9 \mod 23 = 8$
- The result is $k = k_{ab} = k_{ba} = 8$

12.2 Key Distribution — Diffie-Hellman key exchange protocol

Table 12.5A MITM Attack Against the Diffie-Hellman Key Exchange Protocol

Α	С	В
(G,g)		(G,g)
$x_a \stackrel{r}{\longleftarrow} \mathbb{Z}_q^*$		$x_b \stackrel{r}{\longleftarrow} \mathbb{Z}_q^*$
$y_a = g^{x_a}$		$y_b = g^{x_b}$
	$\xrightarrow{y_a} \sim \xrightarrow{y_c}$	
	$\stackrel{y_c}{\longleftrightarrow} \sim \stackrel{y_b}{\longleftrightarrow}$	
$k_{ac} = y_c^{x_a}$		$k_{bc} = y_c^{x_b}$
(k _{ac})		(k_{bc})

12.3 Key Agreement — Diffie-Hellman key exchange protocol

- The source of the problem (i.e., susceptibility to MITM attack) is the lack of authenticity
- People therefore prefer an authenticated Diffie-Hellman key exchange, such as provided by the station-to-station (STS) protocol
- There are many possibilities to authenticate a Diffie-Hellman key exchange using complementary cryptographic techniques, such as passwords, secret keys, or digital signatures and public key certificates
- In the case of a password, the encrypted key exchange (EKE) protocol yields an alternative

12.2 Key Distribution — Diffie-Hellman key exchange protocol

Table 12.7 ECDH Protocol

Α

В

$$(Curve, G, n) \qquad (Curve, G, n)$$

$$d_{a} \stackrel{r}{\longleftarrow} \mathbb{Z}_{n} \setminus \{0\} \qquad d_{b} \stackrel{r}{\longleftarrow} \mathbb{Z}_{n} \setminus \{0\}$$

$$Q_{a} = d_{a}G \qquad Q_{b} = d_{b}G$$

$$\downarrow Q_{a} \qquad \downarrow Q_{b} \qquad \downarrow Q_{b}$$

$$k_{ab} = d_{a}Q_{b} \qquad k_{ba} = d_{b}Q_{a}$$

$$(k_{ab}) \qquad (k_{ba})$$

12.2 Key Distribution — Diffie-Hellman key exchange protocol

- Toy example
 - (*Curve*, G, n) from Chapter 5, i.e., a = b = 1 ($y^2 \equiv x^3 + x + 1$), p = 23 (\mathbb{Z}_{23}), G = (3, 10), and n = 28
 - A selects $d_a = 6$, computes $Q_a = 6G = 6(3,10) = (12,4)$, and sends $Q_a = (12,4)$ to B
 - B selects $d_b = 11$, computes $Q_b = 11G = 11(3, 10) = (18, 20)$, and sends $Q_b = (18, 20)$ to A
 - A computes $d_a Q_b = 6(18, 20) = (6, 4)$
 - B computes $d_bQ_a = 11(12,4) = (6,4)$
 - Note that $6 \cdot 11(3,10) = 11 \cdot 6(3,10) = 66 \mod 28(3,10) = 10(3,10) = (6,4)$

- Quantum cryptography refers to a key establishment technology that is based on the laws of quantum physics (instead of mathematics)
- More specifically, it makes use of the Heisenberg uncertainty principle
- This principle states that certain pairs of physical quantities of an object, such as its position and velocity, cannot both be measured exactly at the same time
- This has practical implications for the exceedingly small masses of atoms and subatomic particles, like photons

- To measure the polarization of a photon, one can use one of two bases:
 - A **rectilinear basis** (\boxplus) is able to reliably distinguish between photons that are polarized horizontally with $0^{\circ}/180^{\circ}$ (\leftrightarrow) or vertically with $90^{\circ}/270^{\circ}$ (\updownarrow)
 - A diagonal basis (⋈) is able to reliably distinguish between photons that are polarized diagonally, i.e., with either 45°/225° (⋈) or 135°/315° (⋈)
- This can be exploited to establish a quantum channel

- In 1984, Charles H. Bennett and Gilles Brassard proposed a quantum cryptography-based key exchange protocol known as quantum key exchange (QKE)
- A may send out photons in one of four polarizations: ↔, ∠,
 ↑, or ∿
- B measures the polarizations of the photons it receives
- According to the laws of quantum physics, B can distinguish between rectilinear polarizations (i.e., ↔ or \$\\$\tan\$ using \$\mathbb{B}\$) and diagonal polarizations (i.e., \$\nabla\$ or \$\sqrt{\sq}}}}}}}}}} vintentified sightander}}} verified septrop\set\sqrt{\synceptc}}}}}}}} verifyender}} verifyender}} verified sept

- Coding rules (encoding and decoding)
 - Rectilinear basis (⊞)
 - Horizontal polarization with $0^{\circ}/180^{\circ}$ (\leftrightarrow) stands for 0
 - Vertical polarization with 90°/270° (↑) stands for 1
 - Diagonal basis (⋈)
 - Diagonal polarization with 45°/225° (∠) stands for 0
 - Diagonal polarization with $135^{\circ}/315^{\circ}$ ($\[\nwarrow \]$) stands for 1

1)	0	0	1	0	1	1	0	1	1	0
2)	\blacksquare	\boxtimes	\boxtimes	\blacksquare	\boxtimes	\boxplus	\blacksquare	\boxtimes	\boxtimes	\blacksquare
3)	\leftrightarrow	7	\checkmark	\leftrightarrow	\checkmark	1	\leftrightarrow	\checkmark	\checkmark	\leftrightarrow
4)	\blacksquare	\blacksquare	\boxtimes	\blacksquare	\boxplus	\boxtimes	\blacksquare	\blacksquare	\boxtimes	\boxtimes
5)	0		1	0	0	0	0	1	1	0
6)	\blacksquare		\boxtimes	\blacksquare	\blacksquare	\boxtimes	\blacksquare	\blacksquare	\boxtimes	\boxtimes
7)	\checkmark		\checkmark	\checkmark			\checkmark		\checkmark	
8)	0		1	0			0		1	
9)			1				0			
10)			\checkmark				\checkmark			
11)	0			0					1	

- Advantages
 - Provides an alternative key exchange method (whose security does not depend on mathematics)
 - Resistant to quantum computing
- Disadvantages (problem areas)
 - Requires specialized hardware (costs)
 - Requires and authentic channel (bootstrap problem)
 - Relatively small distances (≈ 100 km)
 - Must be combined with "conventional" cryptography
 -

- Many researchers have contributed to quantum cryptography in many ways
- In 1991, Artur Ekert proposed an alternative QKE protocol that uses entangled photons
- In addition to quantum key distribution protocols (using polarized or entangled photons), many other quantum cryptographic protocols have been developed and proposed
- A few companies sell quantum cryptographic devices and products, such as ID Quantique and MagiQ Technologies

12.5 Final Remarks

- The Diffie-Hellman key exchange protocol is omnipresent (i.e., it is used in almost all Internet security protocols)
- Whenever two entities want to establish a secret key, it provides an elegant and highly efficient solution
- Using bilinear maps, it can be generalized to three entities
- The generalization to > 3 entities remains an open problem
- People use Diffie-Hellman trees to come up with key exchange protocols that have a complexity that grows "only" logarithmically with the number of entities (e.g., IETF MLS WG)

Questions and Answers

Thank you for your attention

