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13. Asymmetric Encryption
13.1 Introduction

An asymmetric encryption system can be implemented with a
trapdoor (one-way) function

The (one-way) function can be computed with the public key
pk → encryption
The inverse function can be computed with the private
(secret) key sk → decryption

The asymmetric encryption system consists of three efficiently
computable algorithms, i.e., Generate, Encrypt, and Decrypt

Encrypt and Decrypt must be inverse to each other
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13. Asymmetric Encryption
13.1 Introduction
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13. Asymmetric Encryption
13.1 Introduction

The sender computes

c = Encrypt(pkA,m)

The recipient A computes

m = Decrypt(skA, c)

If m is larger than one block, then a sequence of blocks must
be generated and each block must be encrypted and
decrypted individually (using a mode of operation)
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13. Asymmetric Encryption
13.1 Introduction

Similar to a symmetric encryption system, one may wonder
whether an asymmetric encryption system is secure

Information-theoretic or unconditional security does not exist
here

The Encrypt algorithm works with a public key, and hence an
adversary who is given a ciphertext can always mount a
brute-force attack to find the appropriate plaintext message

Such an attack may be computationally expensive but feasible

The best one can achieve is (some possibly strong notion of)
computational or conditional security
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13. Asymmetric Encryption
13.1 Introduction

Attacks

Ciphertext-only attacks
Known-plaintext attacks
Chosen-plaintext attacks (CPA)
Adaptive CPA (CPA2)
Chosen-ciphertext attacks (CCA)
Adaptive CCA (CCA2)

In the realm of asymmetric encryption, CPAs (and CPA2s) are
always possible

The more interesting case refers to (adaptive) CCAs
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13. Asymmetric Encryption
13.1 Introduction

The simplest and most straightforward notion of security is
one-way security

An asymmetric encryption system is one-way secure, if it is
computationally infeasible for the adversary (one has in mind)
to determine a plaintext message from a given ciphertext and
public key

This notion of security is not sufficient

It does not exclude the case that the ciphertext may leak
some partial information about the plaintext message
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13. Asymmetric Encryption
13.1 Introduction

Stronger notions of security

Semantic security
Indistinguishability of ciphertext (IND)
Nonmalleability (NM)

IND and NM can be considered under a CPA (CPA2) or CCA
(CCA2)

This can be formalized in IND-CPA and IND-CCA games

In either case, the encryption must be probabilistic
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13. Asymmetric Encryption
13.1 Introduction

The adversary wins the IND-CPA game if Pr[b′ = b] = 1
2 + ε

for some nonnegligible ε
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13. Asymmetric Encryption
13.1 Introduction

The adversary wins the IND-CCA game if Pr[b′ = b] = 1
2 + ε

for some nonnegligible ε
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13. Asymmetric Encryption
13.1 Introduction

Under a CPA, semantic security and IND are equivalent

Under a CCA, IND and NM are equivalent
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

In the early 1980s, Shafi Goldwasser and Silvio Micali
introduced the notion of semantic security and proposed
probabilistic encryption

It is based on the assumed intractability of the quadratic
residuosity problem (QRP) in Z∗n

Definition A.31 (QRP)

If n ∈ N is a composite integer and x ∈ Z∗n, then it is to decide
whether x is a quadratic residue modulo n, i.e., x ∈ QRn, or not,
i.e., x ∈ QNRn.
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

For prime number p, the Legendre symbol of x modulo p is
defined as (

x

p

)
=


0 if x ≡ 0 (mod p)
1 if x ∈ QRp

−1 if x ∈ QNRp

It basically says whether x is a quadratic residue modulo p
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

The Legendre symbol of x modulo p can be efficiently
computed with Euler’s criterion(

x

p

)
≡ x

p−1
2 (mod p)

It is one iff x is a quadratic residue modulo p

x ∈ QRp ⇔
(
x

p

)
= 1
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

If n is a composite number, then

x ∈ QRn ⇒
(x
n

)
= 1

but

x ∈ QRn :
(x
n

)
= 1

If x is a quadratic residue modulo n, then the Jacobi symbol
of x modulo n must be 1

The converse need not be true
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

If the Jacobi symbol of x modulo n is −1, then x is a
quadratic nonresidue modulo n

x ∈ QNRn ⇐
(x
n

)
= −1

Jn is the set of all elements x of Z∗n for which the Jacobi
symbol of x modulo n is 1

Q̃Rn = Jn \ QRn is the set of all pseudosquares modulo n
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

If n = pq, then

|QRn| = |Q̃Rn| = (p − 1)(q − 1)/4

This means that half of the elements in Jn are quadratic
residues and the other half are pseudosquares modulo n

For a given element of Jn it is computationally infeasible to
decide whether it is a quadratic residue (square) or a
pseudosquare modulo n — unless one knows the factorization
of n
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13. Asymmetric Encryption
13.2 Probabilistic Encryption
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p = 3

q = 7

n = 3 · 7 = 21

φ(n) = 2 · 6 = 12

Z∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}
QNR21 = {2, 8, 10, 11, 13, 19}
J21 = {1, 4, 5, 16, 17, 20}
QR21 = {1, 4, 16}

Q̃R21 = {5, 17, 20}
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

Table 13.1
Probabilistic Encryption System

System parameters: —

Generate

(1l )

p, q
r← Pl/2

n = p · q
y

r← Q̃Rn

((n, y), (p, q))

Encrypt

((n, y),m)

for i = 1, . . . ,w

xi
r← Z∗n

if mi = 1

then ci ≡ x2i (mod n)

else ci ≡ yx2i (mod n)
c = c1, . . . , cw

(c)

Decrypt

((p, q), c)

for i = 1, . . . ,w

ei =
(

ci
p

)
if ei = 1

then mi = 1
else mi = 0

m = m1, . . . ,mw

(m)
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13. Asymmetric Encryption
13.2 Probabilistic Encryption

In its original form, probabilistic encryption has a huge
message expansion (i.e., every bit is encrypted with an
element of Z∗n)

This can be improved considerably

Probabilistic encryption is still not used in the field, because it
competes with RSA-OAEP and many other efficient
asymmetric encryption systems

The bottom line is that probabilistic encryption is theoretically
(and historically) interesting but practically irrelevant
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems

After the discovery of the Diffie-Hellman key exchange in the
mid-1970s, a few public key cryptosystems were invented and
proposed

RSA (1977)
Rabin (1979)
Elgamal (1984)
. . .

These systems can be used for asymmetric encryption

cbd Rolf Oppliger 27

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 13 – Asymmetric Encryption

13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

RSA was invented by Ron Rivest, Adi Shamir, and Leonard
Adleman in 1977
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

A U.S. patent application was filed on December 14, 1977

A corresponding article was published in the February 1978
issue of the Communications of the ACM

The company RSA Security was founded in 1982

On September 20, 1983, the U.S. patent 4,405,829 entitled
“Cryptographic Communications System and Method” was
assigned to MIT (expired in 2000)

Rivest, Shamir, and Adleman were granted the prestigious
ACM A.M. Turing Award in 2002
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

As its name suggests, the RSA public key cryptosystem is
based on the RSA family of trapdoor permutations

Contrary to other public key cryptosystems, it yields both an
asymmetric encryption system and a DSS

A major advantage of RSA is that the same algorithms

Generate
Encrypt
Decrypt

are used in either case
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

Table 13.2
RSA Asymmetric Encryption System

System parameters: —

Generate

(1l )

p, q
r← Pl/2

n = p · q
select 1 < e < φ(n)

with gcd(e, φ(n)) = 1
compute 1 < d < φ(n)

with de ≡ 1 (mod φ(n))

((n, e), d)

Encrypt

((n, e),m)

c = me mod n

(c)

Decrypt

(d, c)

m = cd mod n

(m)
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

To verify the correctness of RSA one must show that
cd ≡ (me)d ≡ m (mod n) holds for all m ∈ Zn

If gcd(m, n) = 1, then m ∈ Z∗n and Euler’s theorem applies

cd ≡ (me)d ≡ med ≡ mk·φ(n)+1

≡ mk·φ(n) ·m
≡ m (mod n)

If gcd(m, n) 6= 1, then Euler’s theorem does not apply and the
Chinese remainder theorem (CRT) can be used instead (not
shown here)
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

Toy example

The Generate algorithm first selects p = 11 and q = 23, and
computes n = 11 · 23 = 253 and φ(253) = 10 · 22 = 220,
before it selects e = 3 and computes d = 147
[3 · 147 = 441 ≡ 1 (mod 220)]
(253, 3) is the public key, whereas 147 is the private key
To encrypt m = 26, the Encrypt algorithm computes
c = 263 mod 253 = 119
This value is transmitted to the recipient
To decrypt c = 119, the Decrypt algorithm computes
m = 119147 mod 253 = 26
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

Since its invention in 1977, the security of the RSA public key
cryptosystem has been subject to a lot of public scrutiny

Many people have challenged and analyzed the security of
RSA

No devastating vulnerability or weakness has been found so far

More than four decades of cryptanalytical research have
provided insight into its security properties and guidelines for
proper implementation and use
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

The RSA asymmetric encryption system is based on the RSA
family of trapdoor permutations

This means that its security is based on the RSAP that is
(believed to be) computationally intractable

If n is sufficiently large and m is widespread between 0 and
n − 1, then the adversary must find the correct m by a
brute-force attack

Such an attack has an exponential running-time and is
prohibitively expensive in terms of computational resources
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

The RSAP polytime reduces to the IFP, i.e., RSAP ≤P IFP

This means that one can invert the RSA function if one can
solve the IFP

The converse is not known to be true, meaning that it is not
known whether an algorithm to solve the IFP can be
constructed from an algorithm to solve the RSAP
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

The following problems are computationally equivalent

Factorize n
Compute φ(n) from n
Determine d from (n, e)

This suggests that the prime factors of n (i.e., p and q), φ(n),
and d are all trapdoors

cbd Rolf Oppliger 37

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 13 – Asymmetric Encryption

13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

The LSB yields a hard-core predicate for the RSA function

More generally, the RSA function has the bit security property
(i.e., all bits are equally well protected)

The bit security proof of the RSA encryption system is a
double-edged sword, because the security reduction also
provides a possibility to attack a leaky implementation

If an implementation of the RSA Decrypt algorithm leaks
some bit(s) of a plaintext message, then this leakage can be
(mis)used to solve the RSAP and decrypt a ciphertext without
knowing the private key (e.g., Bleichenbacher attack)
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

The encryption function of the RSA asymmetric encryption
system is deterministic

This means that it can neither be semantically secure nor
provide IND-CPA

Specific attacks (in addition to side-channel attacks)

Common modulus attacks (→ never reuse n)
Low exponent attacks (→ use e = 216 + 1 = 65,537 or larger)
Attacks that exploit the multiplicative structure (or
homomorphic property) of the RSA function
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

If m1 and m2 are encrypted with (n, e), then c1 = me
1 mod n

and c2 = me
2 mod n

The product m = (m1m2) mod n can be encrypted as

c = (c1c2) mod n

This follows from c1c2 = (me
1m

e
2) = (m1m2)e mod n

So c can be computed without knowing m1, m2, or m

This homomorphic property is a dual-edged sword
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

The homomorphic property can be eliminated with padding

The optimal asymmetric encryption padding (OAEP) is a
padding scheme that uses random values to turn the
encryption algorithm into a probabilistic one

OAEP was adopted in PKCS #1 (since version 2.0) and
specified in RFC 2437 (version 2.1 in RFC 3447)

RSA-OAEP is semantically secure and provides IND-CPA in
the random oracle model
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

OAEP(m) = (s, t) = m ⊕ g(r)︸ ︷︷ ︸
s

‖ r ⊕ h(m ⊕ g(r))︸ ︷︷ ︸
t

s t

g

h

r

m

+

+

00...0

k0

k1k-k0-k1

k-k0
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

The recipient computes

r = t ⊕ h(s) = r ⊕ h(m ⊕ g(r))⊕ h(m ⊕ g(r))

and

m = s ⊕ g(r) = m ⊕ g(r)⊕ g(r)

to retrieve the plaintext message m

This string still comprises the k1 zero bits that are appended
to m
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — RSA

Important facts (to keep in mind)

The modulus n should be ≥ 2,048 bits
The prime factors p and q should be equally long (but not too
close to

√
n)

Due to its deterministic encryption function, RSA is at most
one-way secure (i.e., it cannot provide IND-CPA and is not
semantically secure)
As such, basic (textbook) RSA is in line with the state of the
art in asymmetric encryption
RSA-OAEP should be used whenever possible
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Rabin

The RSAP is not computationally equivalent to the IFP

This means that it may be possible to break RSA without
solving the IFP (this may be worrisome)

Since the beginning of public key cryptography, people have
been looking for cryptosystems that are computationally
equivalent to a hard problem, such as the IFP

Michael Rabin was the first researcher who proposed such a
system in 1979

It is based on the Square family of trapdoor permutations and
yields an asymmetric encryption system and a DSS
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Rabin

Table 13.3
Rabin Asymmetric Encryption System

System parameters: —

Generate

(1l )

p, q
r← P′l/2

n = p · q

(n, (p, q))

Encrypt

(n,m)

c = m2 mod n

(c)

Decrypt

((p, q), c)

m1,m2,m3,m4 = c1/2 mod n
Determine correct value mi

(mi )

P′
l/2

refers to the set of all l/2-bit primes that are equivalent to 3 modulo 4 (so n is an

l-bit Blum integer)
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Rabin

Toy example

The Generate algorithm selects p = 11 and q = 23 (both
primes are equivalent to 3 modulo 4), and computes
n = 11 · 23 = 253
253 is the public key, whereas (11, 23) is the private key
To encrypt m = 158, the Encrypt algorithm computes
c = 1582 mod 253 = 170
This value is transmitted to the recipient
To decrypt c = 170, the Decrypt algorithm first computes the
square roots 26, 227, 95, and 158, and then decides that 158
is the correct value (e.g., using redundancy)
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Rabin

Under the intractability assumption of the IFP, the Rabin
asymmetric encryption system is one-way secure

Theorem (Security of Rabin)

Breaking the one-way security of the Rabin asymmetric encryption
system is computationally equivalent to solving the IFP

If one uses redundancy to defeat the ambiguity in decryption,
then the proof does no longer apply

Consequently, one has to choose between practicability or
(provable) one-way security
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Elgamal

Public key cryptography started in the 1970s with the
publication of the Diffie-Hellman key exchange

In 1984, Taher Elgamal found a way to turn the
Diffie-Hellman key exchange into a public key cryptosystem

It yields an asymmetric encryption system and a DSS

It can be defined in any cyclic group G in which the DLP is
assumed to be intractable, such as

Z∗
p

q-order subgroup of Z∗
p (generated by g)

group of points on an elliptic curve over a finite field
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Elgamal

Table 13.4
Elgamal Asymmetric Encryption System

System parameters: G , g

Generate

(−)

x
r← Zq

y = gx

(x, y)

Encrypt

(m, y)

r
r← Zq

K = y r

c1 = g r

c2 = Km

(c1, c2)

Decrypt

((c1, c2), x)

K = cx1
m = c2/K

(m)
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Elgamal

Toy example

For G = Z∗
17 and g = 7 (q = 16), the Generate algorithm may

select x = 6 and compute y = 76 mod 17 = 9
9 is the public key, whereas 6 is the private key
To encrypt m = 7, the Encrypt algorithm may select r = 3,
compute K = 93 mod 17 = 15, and conclude with
c1 = 73 mod 17 = 3 and c2 = (15 · 7) mod 17 = 3
The ciphertext (3,3) is transmitted to the recipient
The Decrypt algorithm first computes K = 36 mod 17 = 15,
and then solves 15m ≡ 3 (mod 17) for m
The result is m = 7 (because 15 · 7 = 105 mod 17 = 3)
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Elgamal

Under the intractability assumption of the (computational)
DHP, the Elgamal asymmetric encryption system is one-way
secure

Because its encryption algorithm is probabilistic, the Elgamal
asymmetric encryption system can provide IND-CPA and is
semantically secure under the DDHP intractability assumption

Theorem (Security of Elgamal)

If the DDHP is hard, then the Elgamal asymmetric encryption
system provides IND-CPA and is semantically secure
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Elgamal

The Elgamal asymmetric encryption system provides IND-CPA
and is semantically secure

But it is multiplicatively homomorphic, and hence highly
malleable

If one is given a ciphertext of some (unknown) plaintext
message m, then one can easily construct a ciphertext for 2m

Consequently, the Elgamal asymmetric encryption system
cannot provide IND-CCA or NM-CCA

The Cramer-Shoup variant (1998) can be used instead
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13. Asymmetric Encryption
13.3 Asymmetric Encryption Systems — Elgamal

Table 13.5
Cramer-Shoup Asymmetric Encryption System

System parameters: G , g1, g2

Generate

(−)

x1, x2, y1, y2, z
r← Z5

q

c = g
x1
1 g

x2
2

d = g
y1
1 g

y2
2

e = gz1

(x1, x2, y1, y2, z)
(c, d, e)

Encrypt

(m, (c, d, e))

r
r← Zq

u1 = g r1
u2 = g r2
v = erm
α = h(u1, u2, v)
w = cr d rα

(u1, u2, v,w)

Decrypt

((u1, u2, v,w),
(x1, x2, y1, y2, z))

α = h(u1, u2, v)

If w = u
x1+αy1
1 u

x2+αy2
2

then return m = w/uz1
else return “reject”

(m or “reject”)
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13. Asymmetric Encryption
13.4 Identity-Based Encryption

In an asymmetric encryption system, every user has a public
key pair, and the keys look arbitrary and random

One thus faces the problem that one cannot easily attribute a
public key to a particular entity (e.g., user) and that one has
to work with public key certificates

A public key certificate is a data structure that is issued by a
trusted certification authority (CA)

If there are multiple CAs in place, then one usually talks
about public key infrastructures (PKIs)

The implementation of a PKI has turned out to be more
difficult than originally anticipated
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13. Asymmetric Encryption
13.4 Identity-Based Encryption

In the early 1980s, Shamir came up with an alternative idea

If one chooses a public key to uniquely identify its holder,
then one no longer has to care about public key certification

Shamir coined the term identity-based cryptography to
refer to this idea

The advantages are related to the avoidance of public key
certificates and respective key directory services.
The most important disadvantages are related to the necessity
of having a unique naming scheme and the fact that a trusted
authority is needed to generate the public key pairs and
distribute them to the entities
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13. Asymmetric Encryption
13.4 Identity-Based Encryption

In his original publication, Shamir introduced the notion of
identity-based cryptography and proposed a DSS

In 2001, Dan Boneh and Matthew K. Franklin proposed an
identity-based encryption (IBE) system based on bilinear
maps (pairings) on elliptic curves

In the same year, Clifford Cocks proposed an IBE system
based on the QRP (less practical)

In summary, IBE is a nice idea in theory, but it has not been
adopted in practice
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13. Asymmetric Encryption
13.5 Fully Homomorphic Encryption

In 1978, Rivest, Adleman, and Michael Leonidas Dertouzos
published a paper in which they introduced the notion of
homomorphic encryption
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13. Asymmetric Encryption
13.5 Fully Homomorphic Encryption

Homomorphic encryption is about encrypting data in a way
that allows computations to be done only on the ciphertexts
(i.e., without decryption)

More specifically, if } is a computation on m1 and m2 and E
is a homomorphic encryption function, then there is another
computation ~ (that can also be the same) for which
E (m1 }m2) = E (m1) ~ E (m2) holds

This means that one can computes E (m1 }m2) even if one
only knows E (m1) and E (m2)
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13. Asymmetric Encryption
13.5 Fully Homomorphic Encryption

Many asymmetric encryption systems in use today are
partially homomorphic

For example, RSA and Elgamal are both multiplicatively
homomorphic

Similarly, the Paillier system is additively homomorphic

For three decades, it was not clear whether fully
homomorphic encryption (FHE), in which both addition
and multiplication are supported, is feasible at all
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13. Asymmetric Encryption
13.5 Fully Homomorphic Encryption

In 2009, Craig Gentry solved the problem and proposed a FHE
system using lattice-based cryptography

Gentry’s proposal is a major theoretical breakthrough, but it is
impractical for real-world applications

Since then, many researchers are working on FHE systems
that are more practical

FHE is sometimes claimed to be the holy grail for secure cloud
computing
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13. Asymmetric Encryption
13.6 Final Remarks

All basic asymmetric encryption systems — RSA, Rabin, and
Elgamal — are one-way secure

If a system is to provide IND-CPA and be semantically secure,
then its encryption algorithm needs to be probabilistic

This is not true for basic RSA and Rabin, so one has to invoke
some complementary technology, like OAEP

RSA-OAEP and Rabin-OAEP provide IND-CPA in the random
oracle model

Elgamal natively provides IND-CPA

Elgamal can be modified to be nonmalleable and provide
IND-CCA in the standard model (e.g., Cramer-Shoup)
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13. Asymmetric Encryption
13.6 Final Remarks

There are many other asymmetric encryption systems that
have been developed and proposed in the literature

Some of these systems have been broken and become obsolete

For example, the NP-complete subset sum problem has served
as a basis for many public key cryptosystems

All knapsack-based public key cryptosystems (including the
Chor-Rivest knapsack cryptosystem) have been broken

It is thus necessary but not sufficient that a public key
cryptosystem is based on a mathematically hard problem
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13. Asymmetric Encryption
13.6 Final Remarks

There are a few systems that have turned out to be resistant
against all types of attacks

In 1978, Robert McEliece proposed an asymmetric encryption
system back that has remained secure

The respective McEliece asymmetric encryption system was
the first to use randomization in the encryption process

Due to its relative inefficiency and use of large keys, the
system has never gained widespread use

This is about to change, because Classic McEliece is a finalist
in the NIST PQC competition
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Questions and Answers
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Thank you for your attention
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