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14. Digital Signatures

14.1 Introduction

m DSS with appendix (cf. Definition 2.13)

Security parameter

Generate |

sk

-—l Sign } n

Verify |——> vana

) )

Signer

. .

Verifier

@®O Rolf Oppliger

Cryptography 101: F Theory to Practice


https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 14 — Digital Signatures
0@0000000000000000000000000000000000000000000000000000000

14. Digital Signatures

14.1 Introduction

m DSS giving message recovery (cf. Definition 2.14)

Security parameter

pky

Generate

sk
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14. Digital Signatures

14.1 Introduction

m A DSS must be correct and sound (secure)

m It is correct if every valid signature is accepted
m It is sound if no invalid siganture is accepted, i.e., it is
computationally infeasible to forge a signature

m A proper security definition must specify
The adversary’s capabilities

The task the adversary is required to solve in order to be
successful (i.e., to break the security of the system)
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14. Digital Signatures

14.1 Introduction

Classes of attacks (increasing power)
m Key-only attacks
m Known-message attacks (KMA)
m Chosen-message attacks (CMA)
m Nonadaptive
m Adaptive
Types of forgery (decreasing difficulty)
m Universal forgery
m Selective forgery
m Existential forgery
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14. Digital Signatures

14.1 Introduction

A provably secure DSS protects against existential forgery
under an adaptive CMA

m This is the strongest notion of security

m The respective proof can be in the standard or random oracle
model

m Most provably secure DSS follow the hash-and-sign
paradigm

B A message is first hashed and then signed using a variant of a
basic DSS, such as RSA, Rabin, or Elgamal
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14. Digital Signatures

14.2 Digital Signature Systems

RSA

PSS and PSS-R
Rabin

Elgamal

DSA
ECDSA

]
]
]
]
m Schnorr
]
]
m Cramer-Shoup
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14. Digital Signatures

14.2 Digital Signature Systems — RSA

Table 14.1
RSA DSS with Appendix

Domain parameters: —

Generate
(11) ian Verify
P, q < P/ (d, m) (e ms
n=p-q t = h(m)
selectll < e < ¢(n) s = (h(m)?) mod n t' =€ mod n
with ged(e, ¢(n)) = 1 _— b=(t=1t")
compute 1 < d < ¢(n) (s)
with de = 1 (mod ¢(n)) (b)

((n, e), d)
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14. Digital Signatures

14.2 Digital Signature Systems — RSA

m Toy example

m The Generate algorithm selects p = 11 and g = 23, computes
n=11-23 =253 and ¢(253) = 10 - 22 = 220, selects e = 3,
and computes d = 147 modulo 220
[3-147 =441 =1 (mod 220)]

m (253,3) is the public key, whereas 147 is the private key

m To digitally sign a message m with h(m) = 26, the Sign
algorithm computes s = 2647 mod 253 = 104

m To verify the signature, the Verify algorithm computes
t = h(m) and t’ = RSAs33(104) = 104® mod 253 = 26, and
returns valid (because t = t' = 26)
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14. Digital Signatures

14.2 Digital Signature Systems — RSA

m Since h(m) is typically much shorter than the modulus n, it is
necessary to expand h(m) to the bitlength of n

m This can be done by prepending zeros or using a distinct
message expansion function (e.g., PKCS #1)

m Since PKCS #1 version 1.5, this function is
hchs#l(m) = 0x00 01 FF FF ...FF FF 00 ” h/D || h(m)

m PSS and PSS-R use a more sophisticated message expansion
function (see below)
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14. Digital Signatures

14.2 Digital Signature Systems — RSA

m If RSA is used as a DSS giving message recovery, then the
Recover algorithm must first compute

m = RSA, ¢(s) = s° mod n

and then decide whether m is a valid message

m Either the message is constructed in a natural language (that
contains enough redundancy) or a redundancy scheme is used
(e.g., m || m instead of m)
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14. Digital Signatures

14.2 Digital Signature Systems — RSA

m The security of the RSA DSS depends on the properties of
the RSA family of trapdoor permutations

m If one is able to factorize n, then one is also able to determine
the private signing key sk and (universally) forge signatures

m Consequently, n must be so large that its factorization is
computationally infeasible

m This means that |n| > 2,048 bits (or even 4,096 bits for
high-value data)
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14. Digital Signatures

14.2 Digital Signature Systems — RSA

m The multiplicative structure of the RSA function may be
problematic in some application settings

m If m; and m;, are two messages with signatures s; and s, then
s=s15=m{md = (mymy)? mod n

is a valid signature for m = (mymy) mod n

m Good practice in security engineering must take care of the
multiplicative structure of the RSA function

@®O Rolf Oppliger

Cryptography 101: From Theory to Practice


https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 14 — Digital Signatures
000000000000800000000000000000000000000000000000000000000

14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

m Similar to OAEP in asymmetric encryption, PSS is a padding
scheme that can be combined with a basic DSS, like RSA

The resulting DSS is acronymed RSA-PSS
RSA-PSS is provably secure in the radnom oracle model

If PSS is combined with another DSS X, then the resulting
DSS is acronymed X-PSS

m Examples include Rabin-PSS and Elgamal-PSS (not used in
the field)
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

m The RSA key generation algorithm Generate prevails
m Additional parameters and functions

m If / is the bitlength of n, then ly and /; are numbers between 1
and / (e.g., I =1,024 and Iy = , = 128)

m h:{0,1}* — {0,1}" is a “normal” hash function (compressor)

m g:{0,1}" = {0,111~ is an XOF (generator)

PSRRI, AR [T TR I

| gw) | giw) |
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14. Digital Signatures

14.2 Digital Signature Systems — PSS and PSS-R

m Preparation of argument for the RSA-PSS Sign algorithm

v

o w [~ ] )
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

Table 14.2
RSA-PSS

Domain parameters: —

si
en Verify
(d, m)

((n, &), m, s)

r+— {0,1}0 = < mod n
:{‘::hg(fgvy)g} , break up y as( b)H wl r* |y

_ M r=r"@g(w
Y2 ol i el b= (b=0A hm || r) = w A ga(w) = )

b
©) (b)
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

RSA-PSS is only slightly more expensive than basic RSA

It was added in version 2.1 of PKCS #1

The encoding method is referred to as EMSA-PSS
EMSA-PSS stands for Encoding Method for Signature with
Appendix

PKCS #1 version 2.1 (EMSA-PSS) is widely used in the field
m It represents a (still) viable alternative for ECDSA
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14. Digital Signatures

14.2 Digital Signature Systems — PSS and PSS-R

PSS-R yields a DSS giving message recovery

RSA-PSS-R uses the same parameters /, Iy, and /1, and the
same hash functions h and g (with g1 and g»)

The messages to be signed have a maximum length
k=1—-lh—h-1
Suggested choices are | = 1,024, [y = /, = 128, and k = 767

This means that a 767-bit message m can be folded into the
signature
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14. Digital Signatures

14.2 Digital Signature Systems — PSS and PSS-R

m Preparation of argument for the RSA-PSS-R Sign algorithm
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

Table 14.3
RSA-PSS-R

Domain parameters: —

Sign Recover

(d, m) ((n, €), s)

y = s (mod n)

break upy asb || w | r* | m
r=r*®g(w)

m=m* & g(w)

if(b=0 and h(m || r) =w)

r«— {0,1}0 *
w = h(m || r)
r*=g(w)®r
m* = ga(w) & m

_ * *
y = Od” wl | m then output m

s = y? (mod n) else output invalid
(s) (m | invalid)
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14. Digital Signatures

14.2 Digital Signature Systems — Rabin

m The Rabin public key cryptosystem yields another DSS

m It takes its security from the fact that computing square roots
modulo n is computationally equivalent to factoring n

m Depending on its implementation (and the way the U-values
are chosen), the Rabin DSS can be made provably secure in
the random oracle model
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14. Digital Signatures

14.2 Digital Signature Systems — Rabin

Table 14.4
Rabin DSS with Appendix (Simplified Version)

Domain parameters: —

Sign
Generate .
) ((p, q), m) Verify
find U such that h(m || U) (n, m, (U, x))
oo .
p,q <+ P is a square modulo n —
n=p- ql/2 find x that satisfies b= (x* = h(m || U) (mod n))
R S— x2 = h(m || U) (mod n) (b)
(n, (P, q)) (U, %)

Again, IP’;/2 refers to the set of all //2-bit primes that are equivalent to 3 modulo 4 (so

nis an [-bit Blum integer)

@®O Rolf Oppliger

Cryptography 101: F Theory to Practice


https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 14 — Digital Signatures
000000000000000000000080000000000000000000000000000000000

14. Digital Signatures

14.2 Digital Signature Systems — Elgamal

m The Elgamal public key cryptosystem yields another DSS with
appendix

m A variant proposed by Kaisa Nyberg and Rainer R. Rueppel
yields a DSS giving message recovery

m In contrast to RSA, the Elgamal DSS uses different algorithms
and signatures that are twice as long as the modulus

m It is therefore not widely used in the field

m It is defined in a cyclic group in which the DLP is
computationally intractable, such as Zj, (original proposal)

@®® Rolf Oppliger

Cryptography 101: From Theory to Practice


https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 14 — Digital Signatures
000000000000000000000008V000000000000000000000000000000000

14. Digital Signatures

14.2 Digital Signature Systems — Elgamal

Table 14.5
Elgamal DSS with Appendix

Domain parameters: p, g

Sign
Generate (x, m)
) r&{1,...,p—2}
with ged(r,p— 1) =1
X(’—{2,.A ,p—2} slzg’mod(p )
y =g~ mod p —1
- - =~ sp = (r~ " (h(m) — xs1))
(x;,¥) mod (p —1)

(s1,%2)
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Verify

(v, m, (s1,2))

verify 0 < s < p
verify 0 < sp < p—1
b= (g"™ = y=152 (mod p))

(b)
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14. Digital Signatures

14.2 Digital Signature Systems — Elgamal

m The verification is correct, because

S1

ng = gxslgrr—l(h(m)fxsl) (mod P)
gxslgh(m)—xsl (mod P)
gxslg—xslgh(m) (mod P)
g™ (mod p)

y
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14. Digital Signatures

14.2 Digital Signature Systems — Elgamal

m Toy example
m For p =17 (Z3;) and g = 7, the Generate algorithm selects
x = 6 and computes y = 7% mod 17 =9
m 9 is the public key and 6 is the private key
To digitally sign m with h(m) = 6, the Sign algorithm selects
r =3 (with r~* =371 (mod 16) = 11) and computes

s = 7°mod 17 =343 mod 17 =3
s = (11(6—6 - 3)) mod 16 = —132 mod 16 = 12

The signature is (3,12)
The Verify algorithm must verify 0 < 3 < 17, 0 < 12 < 16,
and 7% = 93 . 312 (mod 17), which is 9 in either case
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14. Digital Signatures

14.2 Digital Signature Systems — Elgamal

m The security of the Elgamal public key cryptosystem is based
on the assumed intractability of the DLP in a cyclic group

m In Z;, p must be at least 2,048 bits

m Furthermore, one must select p so that efficient algorithms to
compute discrete logarithms do not work

m For example, p — 1 must not have only small prime factors
(otherwise, the Pohlig-Hellman algorithm can be applied)

m Furthermore, h must be a cryptographic hash function and r
must be unique and unpredictable
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14. Digital Signatures

14.2 Digital Signature Systems — Schnorr

m Claus-Peter Schnorr proposed the use of a g-order subgroup
G of Zy, with q | p— 1 (Schnorr group)

m For example, for p=23and ¢g=(23-1)/2=11,g=2is a
generator of the Schnorr group {1,2,3,4,6,8,9,12,13, 16,18}
with 11 elements (g = 4 is another generator)

m All computations are done in the Schnorr group

m Originally, |p|= 1,024 bits and |g|=160 bits

m The Schnorr DSS is more efficient and the signatures are
shorter (2 - 160 = 320 instead of 2 - 2,048 = 4,096 bits)
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14. Digital Signatures

14.2 Digital Signature Systems — Schnorr

m Unlike Elgamal, the Schnorr DSS relies on the DLP in the
g-order subgroup of Z,

m This problem can only be solved with a generic algorithm

m Such an algorithm has a running time that is of the order of
the square root of g

m For |g|=160 bits, the subgroup has order 21%° and the running
time is of the order of /2160 — 2160/2 _ 80

m The Schnorr DSS is with appendix, but it can be turned into
a DSS giving message recovery (not addressed here)
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14. Digital Signatures

14.2 Digital Signature Systems — Schnorr

Table 14.6
Schnorr DSS

Domain parameters: p, q, g

Sign .

Generate Verify
(x, m)

(=) _— (v, m, (s1, %2))
A u=(g2y 1) mod p

r =
er; r’ = g" mod p v = h(u || m)
y =g mod p sp = h(r’ || m) b=(v=s)
T E— sy = (r+ xs1) mod q
(x,y) —_— (b)

(515 %2)
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14. Digital Signatures

14.2 Digital Signature Systems — Schnorr

m The verification is correct, because v = s; suggests that
h(u || m) = h(r’ || m) and hence u=r’

m This equation is true, because

S2

u = (g%y ") mod p
(ngrxsl xsl) mod p
r X51 Xsl) mod p

(
g’ modp
r’
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14. Digital Signatures

14.2 Digital Signature Systems — Schnorr

m Toy example

@®O Rolf Oppliger

For p =23, g =11, and g = 2 (see above), the Generate
algorithm selects x = 5 and computes y = 2% mod 23 =9

9 is the public key and 5 is the private key

To digitally sign m, the Sign algorithm selects r = 7 and
computes r' = 27 mod 23 = 13

If h(r' || m) =4, then sy =4 and s, =(7+5-4) mod 11 =5
The signature is (4,5)

The Verify algorithm computes u = (2° - 97%) mod 23 = 13
and v = h(13 || m) = 4, and accepts the signature (because
V=85 = 4)
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14. Digital Signatures

14.2 Digital Signature Systems — DSA

m Based on the DSS of Elgamal and Schnorr, NIST developed
the digital signature algorithm (DSA) and digital signature
standard (DSS) in FIPS PUB 186

m Since its publication in 1994, FIPS PUB 186 has been subject
to 4 major revisions in 1998, 2000, 2009, and 2013

m Originally, p had a variable bitlength (512 + 64t bits for
t € {0,...,8}), and g was fixed to 160 bits

m More recent revisions of FIPS PUB 186 support longer
bitlengths for p and g, as well as RSA and ECDSA
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14. Digital Signatures

14.2 Digital Signature Systems — D

Table 14.7
DSA

Domain parameters: p, q, g

Verify
Sign
Generate (y, m, (s1,52))
(=) (x, m) verify 0 < 51,5 < q

P P w:s21modq
X 4= ZLg 9, u; = (h(m)w) mod q
y =g"“mod p uy = (syw) mod q
T — v = (g"1y“2 mod p) mod q
b= (v=s1)

(b)

s; = (g" mod p) mod g
s = r~(h(m) + xs1) mod q

() (s1,%2)
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14. Digital Signatures

14.2 Digital Signature Systems — DSA

m Toy example

@®® Rolf Oppliger

For p =23, g =11, and g = 4, the Generate algorithm selects
x = 3 and computes y = 4% mod 23 = 18

18 is the public key and 3 is the private key

To digitally sign m with h(m) = 6, the Sign algorithm selects
r =17, computes s; = (4’ mod 23) mod 11 = 8, determines
r~1 =771 mod 11 = 8, and computes

55=8(6+8-3)mod 11 =9

The signature is (8,9)

The Verify algorithm verifies that 0 < 8,9 < 11, computes
w=9"1mod11 =5, uy = (6-5) mod 11 = 8,

up = (8-5)mod 11 =7, and v = (4818" mod 23) mod 11 = 8,
and returns valid (because v = s; = 8)
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14. Digital Signatures

14.2 Digital Signature Systems — ECDSA

m ECDSA refers to the elliptic curve variant of DSA

m Instead of working in a g-order subgroup of Z%, it works in a
group of points on an elliptic curve over a finite field Fg, i.e.,
E(Fg), where g is an odd prime or a power of 2

m Today, ECDSA is most widely deployed in the field

m It has been adopted in many standards, including ANSI X9.62,
NIST FIPS 186, ISO/IEC 14888, IEEE 1363-2000, and the
standards for efficient cryptography (SEC) 1 and 2
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14. Digital Signatures

14.2 Digital Signature Systems — ECDSA

Table 14.8
ECDSA

Domain parameters: Curve, G, n

Verify
Sign
. (Q, m, (s1,%2))
enerate
(d, m) ver!fy legitimacy of Q
(-) 2= h(m) |, verify 0 < s1,50 < n
. , ) Hen(n) z = h(m) |jen(n)
dLz ‘e =s; ' mod
_ 4l (x1, 1) =rG A TN
Q= s1 = x; mod n = §zw))moddn
_— 1 up = (syw) mod n
(@ Q) 2= (ztad)medn (1 31) = 116 + 12Q
=, S1 = X1
o) b= ((a,31) £ O) A (s = x1)
(b)
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14. Digital Signatures

14.2 Digital Signature Systems — ECDSA

m Toy example (Curve = E(Z23), G = (3,10), n = 28)

m The Generate algorithm randomly selects d = 3 and computes
Q=3-G=3-(3,10) =(19,5)

m (19,5) is the public key and 3 is the private key

m To digitally sign m, whose leftmost len(n) bits of h(m) refers
to z =5, the Sign algorithm randomly selects r = 11, and
computes 11 - G = (18,20), s, = 18, and
s, =23(5+ 18- 3) mod 28 = 13

m The signature is (18,13)

m The Verify algorithm verifies 0 < 18,13 < 28, computes
w =13, u; = (5-13) mod 28 =9,
u, = (18-13) mod 28 =10, and 9- G + 10 - Q = (18, 20)

m Because this point is # O and its x-coordinate equals s, the
algorithm returns valid
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14. Digital Signatures

14.2 Digital Signature Systems — ECDSA

m Unlike the DSA, the ECDSA is provably secure, i.e., it
protects against existential forgery under an adaptive CMA

m The proof is in the random oracle model

m Like Elgamal and all variants, r must be unique and
unpredictable

m Dan Boneh, Ben Lynn, and Hovav Shacham proposed a
variant of ECDSA based on bilinear maps (BLS)

m Because such signatures are very short (160 bits) and can be
aggregated, they are widely used in blockchain applications
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14. Digital Signatures

14.2 Digital Signature Systems — Cramer-Shoup

m All practical DSS addressed so far have either no security
proof or “only” a security proof in the random oracle model

m This is different with the Cramer-Shoup DSS

m This DSS is practical and can be proven secure in the
standard model under the strong RSA assumption

m There is also a variant that can be proven secure in the
random oracle model under the standard RSA assumption
(not addressed here)
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14. Digital Signatures

14.2 Digital Signature Systems — Cramer-Shoup

Table 14.9
Cramer-Shoup DSS

Domain parameters: /, I” (e.g., | = 160 and "= 512)

Sign
Generate Verif
eri
) (sk, m) Y
_ k, m,s
r e +— P/ 1 with e # € (P )
— P r ;i /
p-q " y' < QR, verify e # e
n=rq e’ _ 1 ¢ch(m) verify e is odd
f,x < — QRy SOIViOEyX)/ =xf verify len(e) = | + 1
r ’
e =Py e h(x') compute x’ = (y')¢ £~hm)
k= (n, f,x e') solve y© = xf' !
it o for b= (x=yf (X))
sk = (p, q) r .,
_ s=(ey,y) (b)
(pk, sk)

(s)

[P}, refers to the set of all safe primes with bitlength I", whereas P/, 1 refers to the set

of all primes with bitlength / 4+ 1
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14. Digital Signatures

14.3 Identity-Based Signatures

m In the early 1980s, Adi Shamir came up with the idea of
identity-based cryptography and proposed a respective DSS
m A trusted authority chooses an RSA modulus n (with prime
factors p and q), a large integer e with gcd(e, ¢(n)), and a
one-way function f as domain parameters
m For every user, it derives a public key pk from the user’s
identity, and computes the respective private key sk as the e-th
root of pk modulo n, i.e., sk® = pk (mod n)

m It can do so, only because it knows the prime factorization of n
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14. Digital Signatures

14.3 Identity-Based Signatures

m To sign message m € Z,, the user selects r €g Z, and
computes t = r® mod n and s = (sk - r(t™) mod n

m The signature is (s, t)
m It is valid, if s = pk - t/(™) (mod n) holds

s¢ = (sk-rf(&™)e (mod n)
skeref(&m) (mod n)
pk - t1&™) (mod n)
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14. Digital Signatures

14.3 Identity-Based Signatures

m Shamir’s identity-based DSS has fueled a lot of research and
development in identity-based cryptography

m Many other identity-based DSS have been proposed (but only
a few IBE systems)

m Main disadvantages

m Unique naming scheme is needed

m Trusted authority is needed (to issue public key pairs)
m Key revocation is still needed
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14. Digital Signatures

14.4 One-Time Signatures

® In a one-time signature system a public key pair can be used
to sign a single message

m If the pair is reused, then it may become feasible to forge a
signature

m The advantages are related to simplicity and efficiency

m The disadvantages are related to the size of the verification
key(s) and the overhead related to key management

m One-time signatures are often combined with techniques to
efficiently authenticate public keys, such as Merkle trees
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14. Digital Signatures

14.4 One-Time Signatures

m Historically, the first one-time signature system was proposed
by Michael O. Rabin in 1978

m The system employed a symmetric encryption system and was
too inefficient to be used in practice

m In 1979, Leslie Lamport proposed a system that is efficient
because it only employs a one-way function f

m If combined with techniques to efficiently authenticate public
verification keys (e.g., Merkle trees), the resulting one-time
signature system is practical
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14. Digital Signatures

14.4 One-Time Signatures

m Let f be a one-way function and m a message to be signed

m Let the bitlength of m be at most n, e.g., 128 or 160 bits
(otherwise m is first hashed)

m The signatory must have a private key that consists of n pairs
of randomly chosen preimages for f:

[t10, u11], [U20, 21], - - -, [Unos Uni]

m Each uj (i=1,...,nand j =0,1) may be an n-bit string
m The 2n arguments may be generated with a PRG
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14. Digital Signatures

14.4 One-Time Signatures

m The respective public key consists of the 2n images f(uj):
[ (u10), f(u11)], [f (u20), F(u21)], - -, [F (uno), F(un1)]

m The 2n images f(uj;) are hashed to a single value p that
represents the public key:

P = h(f(ulo), f(ull), f(LIQO), f(U21), cesy f(u,,o), f(u,,l))

m Complementary techniques to efficiently authenticate
verification keys are needed for multiple signatures
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14. Digital Signatures

14.4 One-Time Signatures

m To sign message m, each bit m; (i =1,...,n) must be
individually signed using the preimage pair [ujo, ui1]
m If m; =0, the signature comprises ujy
m If m; =1, the signature comprises uj;

m The signature s for m comprises all such values

s = [Uimy, U2myy - -+ s Unm,]

m It can be verified by computing all images f(uj;), hashing all
values to p’, and comparing p’ with p (it is valid if p’ = p)
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14. Digital Signatures

14.4 One-Time Signatures

f(uygo) fU11) f(ug 'f(u21).

seed
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14. Digital Signatures

14.4 One-Time Signatures

m Exemplary one-time signature for message m = 0110

m Message bit my is signed with u1g, my with w1, m3 with usg,
and mg with ugg

seed
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14. Digital Signatures

14.4 One-Time Signatures

m There are several possibilities to generalize and improve the
Lamport one-time DSS

m Some improvements are due to Merkle

m Other improvements have been proposed recently to make
one-time signatures suitable for PQC (e.g., SPHINCS+)

m The Lamport one-time DSS and some variants are used in
many cryptographic applications (e.g., anonymous offline
digital cash)
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14. Digital Signatures

14.5 Variants

Blind signatures
Undeniable signatures
Fail-stop signatures

Group signatures (ring signatures)

@®O Rolf Oppliger

Cryptography 101: From Theory to Practice


https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 14 — Digital Signatures
00000000000000000000000000000000000000000000000000000e000

14. Digital Signatures

14.6 Final Remarks

m Digital signatures provide the digital analog of handwritten
signatures

m They are necessary to provide nonrepudiation services

m Many countries and communities have legislation

m U.S. Electronic Signatures in Global and National Commerce
Act, commonly referred to as ESIGN (2000)

m European Electronic Identification and Trust Services
Regulation, commonly referred to as elDAS (2014)

m This also applies to Switzerland (OFCOM)
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14. Digital Signatures

14.6 Final Remarks

m But the laws on electronic or digital signatures have not yet
been disputed in court

m It is therefore not clear what their legal status is

m Signatures always depend on many layers of hardware and
software

m On each of these layers (including the user on top of them),
many things can go wrong

m The mathematical precision of digital signatures in theory is
blurred in practice
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Questions and Answers
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Thank you for your attention
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