Cryptography 101: From Theory to Practice

Chapter 14 - Digital Signatures

Rolf Oppliger

May 13, 2022

Terms of Use

- This work is published with a CC BY-ND 4.0 license (@(i) ()
- CC = Creative Commons (@)
- BY $=$ Attribution (©)
- ND $=$ No Derivatives (Θ)

whoami

$$
\begin{aligned}
& \text { rolf-oppliger.ch } \\
& \text { rolf-oppliger.com }
\end{aligned}
$$

■ Swiss National Cyber Security Centre NCSC (scientific employee)

- eSECURITY Technologies Rolf Oppliger (founder and owner)
■ University of Zurich (adjunct professor)
- Artech House (author and series editor for information security and privacy)

Reference Book

（C）Artech House， 2021 ISBN 978－1－63081－846－3
https：／／books．esecurity．ch／crypto101．html

Challenge Me

Outline

1 Introduction
2 Cryptographic Systems
3 Random Generators
4 Random Functions
5 One-Way Functions
6 Cryptographic Hash Functions
7 Pseudorandom Generators
8 Pseudorandom Functions
9 Symmetric Encryption
10 Message Authentication
11 Authenticated Encryption
12 Key Establishment
13 Asymmetric Encryption

14. Digital Signatures

15 Zero-Knowledge Proofs of Knowledge
16 Key Management
17 Summary
18 Outlook

14. Digital Signatures

14.1 Introduction
14.2 Digital Signature Systems
14.3 Identity-Based Signatures
14.4 One-Time Signatures
14.5 Variants
14.6 Final Remarks

14. Digital Signatures

14.1 Introduction

■ DSS with appendix (cf. Definition 2.13)

14. Digital Signatures

14.1 Introduction

■ DSS giving message recovery (cf. Definition 2.14)

14. Digital Signatures

14.1 Introduction

- A DSS must be correct and sound (secure)
- It is correct if every valid signature is accepted
- It is sound if no invalid siganture is accepted, i.e., it is computationally infeasible to forge a signature
- A proper security definition must specify

1 The adversary's capabilities
2 The task the adversary is required to solve in order to be successful (i.e., to break the security of the system)

14. Digital Signatures

14.1 Introduction

1 Classes of attacks (increasing power)

- Key-only attacks
- Known-message attacks (KMA)
- Chosen-message attacks (CMA)
- Nonadaptive
- Adaptive

2 Types of forgery (decreasing difficulty)

- Universal forgery
- Selective forgery
- Existential forgery

14. Digital Signatures

14.1 Introduction

■ A provably secure DSS protects against existential forgery under an adaptive CMA

- This is the strongest notion of security
- The respective proof can be in the standard or random oracle model
- Most provably secure DSS follow the hash-and-sign paradigm
- A message is first hashed and then signed using a variant of a basic DSS, such as RSA, Rabin, or Elgamal

14. Digital Signatures

14.2 Digital Signature Systems

- RSA
- PSS and PSS-R
- Rabin

■ Elgamal
■ Schnorr

- DSA
- ECDSA
- Cramer-Shoup

14. Digital Signatures

14.2 Digital Signature Systems — RSA

Table 14.1 RSA DSS with Appendix

Domain parameters: -
Generate

14. Digital Signatures

14.2 Digital Signature Systems — RSA

- Toy example
- The Generate algorithm selects $p=11$ and $q=23$, computes $n=11 \cdot 23=253$ and $\phi(253)=10 \cdot 22=220$, selects $e=3$, and computes $d=147$ modulo 220 $[3 \cdot 147=441 \equiv 1(\bmod 220)]$
- $(253,3)$ is the public key, whereas 147 is the private key
- To digitally sign a message m with $h(m)=26$, the Sign algorithm computes $s=26^{147} \bmod 253=104$
- To verify the signature, the Verify algorithm computes $t=h(m)$ and $t^{\prime}=\operatorname{RSA}_{253,3}(104)=104^{3} \bmod 253=26$, and returns valid (because $t=t^{\prime}=26$)

14. Digital Signatures

14.2 Digital Signature Systems — RSA

- Since $h(m)$ is typically much shorter than the modulus n, it is necessary to expand $h(m)$ to the bitlength of n
- This can be done by prepending zeros or using a distinct message expansion function (e.g., PKCS \#1)
- Since PKCS \#1 version 1.5, this function is

$$
h_{\text {PKCS } \# 1}(m)=0 \times 0001 \text { FF FF } \ldots \text { FF FF } 00\left\|h_{I D}\right\| h(m)
$$

■ PSS and PSS-R use a more sophisticated message expansion function (see below)

14. Digital Signatures

14.2 Digital Signature Systems — RSA

■ If RSA is used as a DSS giving message recovery, then the Recover algorithm must first compute

$$
m=\operatorname{RSA}_{n, e}(s)=s^{e} \bmod n
$$

and then decide whether m is a valid message

- Either the message is constructed in a natural language (that contains enough redundancy) or a redundancy scheme is used (e.g., $m \| m$ instead of m)

14. Digital Signatures

14.2 Digital Signature Systems — RSA

- The security of the RSA DSS depends on the properties of the RSA family of trapdoor permutations
- If one is able to factorize n, then one is also able to determine the private signing key $s k$ and (universally) forge signatures
- Consequently, n must be so large that its factorization is computationally infeasible
■ This means that $|n| \geq 2,048$ bits (or even 4,096 bits for high-value data)

14. Digital Signatures

14.2 Digital Signature Systems — RSA

- The multiplicative structure of the RSA function may be problematic in some application settings
- If m_{1} and m_{2} are two messages with signatures s_{1} and s_{2}, then

$$
s \equiv s_{1} s_{2} \equiv m_{1}^{d} m_{2}^{d} \equiv\left(m_{1} m_{2}\right)^{d} \bmod n
$$

is a valid signature for $m=\left(m_{1} m_{2}\right) \bmod n$

- Good practice in security engineering must take care of the multiplicative structure of the RSA function

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

■ Similar to OAEP in asymmetric encryption, PSS is a padding scheme that can be combined with a basic DSS, like RSA

- The resulting DSS is acronymed RSA-PSS

■ RSA-PSS is provably secure in the radnom oracle model
■ If PSS is combined with another DSS X, then the resulting DSS is acronymed X-PSS

- Examples include Rabin-PSS and Elgamal-PSS (not used in the field)

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

■ The RSA key generation algorithm Generate prevails

- Additional parameters and functions
- If I is the bitlength of n, then I_{0} and I_{1} are numbers between 1 and I (e.g., $I=1,024$ and $I_{0}=I_{1}=128$)
- $h:\{0,1\}^{*} \rightarrow\{0,1\}^{1 / 1}$ is a "normal" hash function (compressor)
- $g:\{0,1\}^{l_{1}} \rightarrow\{0,1\}^{I-1_{1}-1}$ is an XOF (generator)

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

- Preparation of argument for the RSA-PSS Sign algorithm

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

Table 14.2 RSA-PSS

Domain parameters: -

Sign
(d, m)
$r \stackrel{r}{\leftarrow}\{0,1\}^{\prime 0}$
$w=h(m \\| r)$
$r^{*}=g_{1}(w) \oplus r$
$y=0\\|w\\| r^{*} \\| g_{2}(w)$
$s=y^{d} \bmod n$
(s)

Verify

$$
\begin{aligned}
& ((n, e), m, s) \\
& \hline y=s^{e} \bmod n \\
& \text { break up } y \text { as } b\|w\| r^{*} \| \gamma \\
& r=r^{*} \oplus g_{1}(w) \\
& b=\left(b=0 \wedge h(m \| r)=w \wedge g_{2}(w)=\gamma\right) \\
& \hline
\end{aligned}
$$

(b)

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

- RSA-PSS is only slightly more expensive than basic RSA

■ It was added in version 2.1 of PKCS \#1

- The encoding method is referred to as EMSA-PSS
- EMSA-PSS stands for Encoding Method for Signature with Appendix
- PKCS \#1 version 2.1 (EMSA-PSS) is widely used in the field

■ It represents a (still) viable alternative for ECDSA

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

■ PSS-R yields a DSS giving message recovery

- RSA-PSS-R uses the same parameters I, I_{0}, and I_{1}, and the same hash functions h and g (with g_{1} and g_{2})
- The messages to be signed have a maximum length $k=I-I_{0}-I_{1}-1$
■ Suggested choices are $I=1,024, I_{0}=I_{1}=128$, and $k=767$
- This means that a 767-bit message m can be folded into the signature

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

- Preparation of argument for the RSA-PSS-R Sign algorithm

14. Digital Signatures

14.2 Digital Signature Systems - PSS and PSS-R

Table 14.3 RSA-PSS-R

Domain parameters: -

14. Digital Signatures

14.2 Digital Signature Systems - Rabin

- The Rabin public key cryptosystem yields another DSS
- It takes its security from the fact that computing square roots modulo n is computationally equivalent to factoring n
- Depending on its implementation (and the way the U-values are chosen), the Rabin DSS can be made provably secure in the random oracle model

14. Digital Signatures

14.2 Digital Signature Systems - Rabin

Table 14.4
 Rabin DSS with Appendix (Simplified Version)

Domain parameters: -

$\left(1^{\prime}\right)$
$p, q \stackrel{r}{\leftarrow} \mathbb{P}_{1 / 2}^{\prime}$
$n=p \cdot q$
$(n,(p, q))$

Sign

$((p, q), m)$
find U such that $h(m \\| U)$
is a square modulo n
find x that satisfies
$\quad x^{2} \equiv h(m \\| U)(\bmod n)$
(U, x)

Verify
$\frac{(n, m,(U, x))}{b=\left(x^{2} \equiv h(m \\| U)(\bmod n)\right)}$
(b)

Again, $\mathbb{P}_{I / 2}^{\prime}$ refers to the set of all $I / 2$-bit primes that are equivalent to 3 modulo 4 (so n is an l-bit Blum integer)

14. Digital Signatures

14.2 Digital Signature Systems - Elgamal

- The Elgamal public key cryptosystem yields another DSS with appendix
■ A variant proposed by Kaisa Nyberg and Rainer R. Rueppel yields a DSS giving message recovery
- In contrast to RSA, the Elgamal DSS uses different algorithms and signatures that are twice as long as the modulus
■ It is therefore not widely used in the field
- It is defined in a cyclic group in which the DLP is computationally intractable, such as \mathbb{Z}_{p}^{*} (original proposal)

14. Digital Signatures

14.2 Digital Signature Systems - Elgamal

Table 14.5
 Elgamal DSS with Appendix

Domain parameters: p, g

Sign

Generate
$(-)$
$x \underset{\leftarrow}{\leftarrow}\{2, \ldots, p-2\}$
$y=g^{x} \bmod p$
(x, y)

$$
\begin{aligned}
& (x, m) \\
& r \stackrel{r}{\leftarrow}\{1, \ldots, p-2\} \\
& \quad \text { with } \operatorname{gcd}(r, p-1)=1 \\
& s_{1}=g^{r} \bmod p \\
& s_{2}=\left(r^{-1}\left(h(m)-x s_{1}\right)\right) \\
& \quad \bmod (p-1)
\end{aligned}
$$

$$
\left(s_{1}, s_{2}\right)
$$

Verify
$\left(y, m,\left(s_{1}, s_{2}\right)\right)$
verify $0<s_{1}<p$
verify $0<s_{2}<p-1$
$b=\left(g^{h(m)} \equiv y^{s_{1}} s_{1}^{s_{2}}(\bmod p)\right)$
(b)

14. Digital Signatures

14.2 Digital Signature Systems - Elgamal

- The verification is correct, because

$$
\begin{aligned}
y^{s_{1}} s_{1}^{s_{2}} & \equiv g^{\times s_{1}} g^{r r^{-1}\left(h(m)-x s_{1}\right)}(\bmod p) \\
& \equiv g^{\times s_{1}} g^{h(m)-x s_{1}}(\bmod p) \\
& \equiv g^{\times s_{1}} g^{-x s_{1}} g^{h(m)}(\bmod p) \\
& \equiv g^{h(m)}(\bmod p)
\end{aligned}
$$

14. Digital Signatures

14.2 Digital Signature Systems - Elgamal

- Toy example

■ For $p=17\left(\mathbb{Z}_{17}^{*}\right)$ and $g=7$, the Generate algorithm selects $x=6$ and computes $y=7^{6} \bmod 17=9$

- 9 is the public key and 6 is the private key
- To digitally sign m with $h(m)=6$, the Sign algorithm selects $r=3\left(\right.$ with $\left.r^{-1} \equiv 3^{-1}(\bmod 16)=11\right)$ and computes

$$
\begin{aligned}
& s_{1}=7^{3} \bmod 17=343 \bmod 17=3 \\
& s_{2}=(11(6-6 \cdot 3)) \bmod 16=-132 \bmod 16=12
\end{aligned}
$$

- The signature is $(3,12)$
- The Verify algorithm must verify $0<3<17,0<12<16$, and $7^{6} \equiv 9^{3} \cdot 3^{12}(\bmod 17)$, which is 9 in either case

14. Digital Signatures

14.2 Digital Signature Systems - Elgamal

- The security of the Elgamal public key cryptosystem is based on the assumed intractability of the DLP in a cyclic group
■ In \mathbb{Z}_{p}^{*}, p must be at least 2,048 bits
■ Furthermore, one must select p so that efficient algorithms to compute discrete logarithms do not work
- For example, $p-1$ must not have only small prime factors (otherwise, the Pohlig-Hellman algorithm can be applied)
- Furthermore, h must be a cryptographic hash function and r must be unique and unpredictable

14. Digital Signatures

14.2 Digital Signature Systems - Schnorr

■ Claus-Peter Schnorr proposed the use of a q-order subgroup G of \mathbb{Z}_{p}^{*} with $q \mid p-1$ (Schnorr group)

- For example, for $p=23$ and $q=(23-1) / 2=11, g=2$ is a generator of the Schnorr group $\{1,2,3,4,6,8,9,12,13,16,18\}$ with 11 elements ($g=4$ is another generator)
- All computations are done in the Schnorr group
- Originally, $|p|=1,024$ bits and $|q|=160$ bits
- The Schnorr DSS is more efficient and the signatures are shorter $(2 \cdot 160=320$ instead of $2 \cdot 2,048=4,096$ bits)

14. Digital Signatures

14.2 Digital Signature Systems - Schnorr

■ Unlike Elgamal, the Schnorr DSS relies on the DLP in the q-order subgroup of \mathbb{Z}_{p}^{*}

- This problem can only be solved with a generic algorithm

■ Such an algorithm has a running time that is of the order of the square root of q

- For $|q|=160$ bits, the subgroup has order 2^{160} and the running time is of the order of $\sqrt{2^{160}}=2^{160 / 2}=2^{80}$
- The Schnorr DSS is with appendix, but it can be turned into a DSS giving message recovery (not addressed here)

14. Digital Signatures

14.2 Digital Signature Systems - Schnorr

Table 14.6 Schnorr DSS

Domain parameters: p, q, g

Generate	Sign	Verify	
	(x, m)	$\left(y, m,\left(s_{1}, s_{2}\right)\right)$	
	r		
$x \stackrel{r}{\leftarrow} \mathbb{Z}_{\underset{\sim}{*}}^{*}$	$\begin{aligned} & r \leftarrow \mathbb{Z}_{q} \bmod p \\ & r^{\prime}=g^{r} \end{aligned}$	$\begin{aligned} u & =\left(g^{s_{2}} y^{-s_{1}}\right) \bmod p \\ v & =h(u \\| m) \end{aligned}$	
$y=g^{x^{4}} \bmod p$	$s_{1}=h\left(r^{\prime} \\| m\right)$	$b=\left(v=s_{1}\right)$	
(x, y)	$5_{2}=\left(r+x s_{1}\right) \text { moo } q$	(b)	
	$\left(s_{1}, s_{2}\right)$		

14. Digital Signatures

14.2 Digital Signature Systems - Schnorr

- The verification is correct, because $v=s_{1}$ suggests that $h(u \| m)=h\left(r^{\prime} \| m\right)$ and hence $u=r^{\prime}$
- This equation is true, because

$$
\begin{aligned}
u & =\left(g^{s_{2}} y^{-s_{1}}\right) \bmod p \\
& =\left(g^{r+x s_{1}} g^{-x s_{1}}\right) \bmod p \\
& =\left(g^{r} g^{x s_{1}} g^{-x s_{1}}\right) \bmod p \\
& =g^{r} \bmod p \\
& =r^{\prime}
\end{aligned}
$$

14. Digital Signatures

14.2 Digital Signature Systems - Schnorr

- Toy example
- For $p=23, q=11$, and $g=2$ (see above), the Generate algorithm selects $x=5$ and computes $y=2^{5} \bmod 23=9$
- 9 is the public key and 5 is the private key
- To digitally sign m, the Sign algorithm selects $r=7$ and computes $r^{\prime}=2^{7} \bmod 23=13$
- If $h\left(r^{\prime} \| m\right)=4$, then $s_{1}=4$ and $s_{2}=(7+5 \cdot 4) \bmod 11=5$
- The signature is $(4,5)$
- The Verify algorithm computes $u=\left(2^{5} \cdot 9^{-4}\right) \bmod 23=13$ and $v=h(13 \| m)=4$, and accepts the signature (because $v=s_{1}=4$)

14. Digital Signatures

14.2 Digital Signature Systems — DSA

■ Based on the DSS of Elgamal and Schnorr, NIST developed the digital signature algorithm (DSA) and digital signature standard (DSS) in FIPS PUB 186

- Since its publication in 1994, FIPS PUB 186 has been subject to 4 major revisions in 1998, 2000, 2009, and 2013
- Originally, p had a variable bitlength ($512+64 t$ bits for $t \in\{0, \ldots, 8\}$), and q was fixed to 160 bits
- More recent revisions of FIPS PUB 186 support longer bitlengths for p and q, as well as RSA and ECDSA

14. Digital Signatures

14.2 Digital Signature Systems — DSA

Table 14.7 DSA

Domain parameters: p, q, g

Generate	Sign (x, m)	Verify
		$\left(y, m,\left(s_{1}, s_{2}\right)\right)$
		verify $0<s_{1}, s_{2}<q$
$\begin{aligned} & x \leftarrow \mathbb{Z}_{q}^{*} \\ & y=g^{x} \bmod p \end{aligned}$	$\begin{aligned} & r \stackrel{r}{\leftarrow} \mathbb{Z}_{q}^{*} \\ & s_{1}=\left(g^{r} \bmod p\right) \bmod q \\ & s_{2}=r^{-1}\left(h(m)+x s_{1}\right) \bmod q \end{aligned}$	$\begin{aligned} & w=s_{2}^{-1} \bmod q \\ & u_{1}=(h(m) w) \bmod q \\ & u_{2}=\left(s_{1} w\right) \bmod q \\ & v=\left(g^{u_{1}} y^{u} \bmod p\right) \bmod q \end{aligned}$
(x, y)	$\left(s_{1}, s_{2}\right)$	$b=\left(v=s_{1}\right)$
		(b)

14. Digital Signatures

14.2 Digital Signature Systems — DSA

■ Toy example

- For $p=23, q=11$, and $g=4$, the Generate algorithm selects $x=3$ and computes $y=4^{3} \bmod 23=18$
- 18 is the public key and 3 is the private key
- To digitally sign m with $h(m)=6$, the Sign algorithm selects $r=7$, computes $s_{1}=\left(4^{7} \bmod 23\right) \bmod 11=8$, determines $r^{-1}=7^{-1} \bmod 11=8$, and computes
$s_{2}=8(6+8 \cdot 3) \bmod 11=9$
- The signature is $(8,9)$
- The Verify algorithm verifies that $0<8,9<11$, computes
$w=9^{-1} \bmod 11=5, u_{1}=(6 \cdot 5) \bmod 11=8$, $u_{2}=(8 \cdot 5) \bmod 11=7$, and $v=\left(4^{8} 18^{7} \bmod 23\right) \bmod 11=8$, and returns valid (because $v=s_{1}=8$)

14. Digital Signatures

14.2 Digital Signature Systems - ECDSA

- ECDSA refers to the elliptic curve variant of DSA

■ Instead of working in a q-order subgroup of \mathbb{Z}_{p}^{*}, it works in a group of points on an elliptic curve over a finite field \mathbb{F}_{q}, i.e., $E\left(\mathbb{F}_{q}\right)$, where q is an odd prime or a power of 2

- Today, ECDSA is most widely deployed in the field
- It has been adopted in many standards, including ANSI X9.62, NIST FIPS 186, ISO/IEC 14888, IEEE 1363-2000, and the standards for efficient cryptography (SEC) 1 and 2

14. Digital Signatures

14.2 Digital Signature Systems - ECDSA

Table 14.8
 ECDSA

Domain parameters: Curve, G, n

Generate	Sign	Verify
		($Q, m,\left(s_{1}, s_{2}\right)$)
	(d, m)	verify legitimacy of Q
(-)	$z=\left.h(m)\right\|_{\text {len }(n)}$	verify $0<s_{1}, s_{2}<n$ $z=\left.h(m)\right\|_{\operatorname{len}(n)}$
$d \stackrel{r}{\leftarrow} \mathbb{Z}_{n}^{*}$	$\stackrel{r}{\leftarrow}{ }_{\left(x_{1}, y_{1}\right.}^{\sim} \mathbb{Z}_{n}^{*}=r G$	$w=s_{2}^{-1} \bmod n$
$Q=d \underline{ }$	$\left(x_{1}, y_{1}\right)=r G$ $s_{1}=x_{1} \bmod n$	$u_{1}=(z w) \bmod n$
(d, Q)	$s_{2}=r^{-1}\left(z+s_{1} d\right) \bmod n$	$\begin{aligned} & u_{2}=\left(s_{1} w\right) \bmod n \\ & \left(x_{1}, y_{1}\right)=u_{1} G+u_{2} Q \end{aligned}$
	$\left(s_{1}, s_{2}\right)$	$b=\left(\left(x_{1}, y_{1}\right) \neq \mathcal{O}\right) \wedge\left(s_{1}=x_{1}\right)$

(b)

14. Digital Signatures

14.2 Digital Signature Systems - ECDSA

■ Toy example (Curve $\left.=E\left(\mathbb{Z}_{23}\right), G=(3,10), n=28\right)$
■ The Generate algorithm randomly selects $d=3$ and computes $Q=3 \cdot G=3 \cdot(3,10)=(19,5)$

- $(19,5)$ is the public key and 3 is the private key
- To digitally sign m, whose leftmost len (n) bits of $h(m)$ refers to $z=5$, the Sign algorithm randomly selects $r=11$, and computes $11 \cdot G=(18,20)$, $s_{1}=18$, and $s_{2}=23(5+18 \cdot 3) \bmod 28=13$
- The signature is $(18,13)$

■ The Verify algorithm verifies $0<18,13<28$, computes $w=13, u_{1}=(5 \cdot 13) \bmod 28=9$, $u_{2}=(18 \cdot 13) \bmod 28=10$, and $9 \cdot G+10 \cdot Q=(18,20)$

- Because this point is $\neq \mathcal{O}$ and its x-coordinate equals s_{1}, the algorithm returns valid

14. Digital Signatures

14.2 Digital Signature Systems - ECDSA

■ Unlike the DSA, the ECDSA is provably secure, i.e., it protects against existential forgery under an adaptive CMA

- The proof is in the random oracle model
- Like Elgamal and all variants, r must be unique and unpredictable
- Dan Boneh, Ben Lynn, and Hovav Shacham proposed a variant of ECDSA based on bilinear maps (BLS)
- Because such signatures are very short (160 bits) and can be aggregated, they are widely used in blockchain applications

14. Digital Signatures

14.2 Digital Signature Systems - Cramer-Shoup

■ All practical DSS addressed so far have either no security proof or "only" a security proof in the random oracle model

- This is different with the Cramer-Shoup DSS
- This DSS is practical and can be proven secure in the standard model under the strong RSA assumption
- There is also a variant that can be proven secure in the random oracle model under the standard RSA assumption (not addressed here)

14. Digital Signatures

14.2 Digital Signature Systems - Cramer-Shoup

Table 14.9
 Cramer-Shoup DSS

Domain parameters: $I, I^{\prime}\left(\right.$ e.g., $I=160$ and $\left.I^{\prime}=512\right)$

Generate
$(-)$
$p, q \stackrel{r}{\leftarrow} \mathbb{P}_{l^{\prime}}^{*}$
$n=p q$
$f, x \underset{r}{\leftarrow} Q R_{n}$
$e^{\prime} \stackrel{P_{l+1}}{r}=\left(n, f, x, e^{\prime}\right)$
$s k=(p, q)$
$(p k, s k)$

Sign

$$
\begin{aligned}
& (s k, m) \\
& \hline e \stackrel{r}{\leftarrow} \mathbb{P}_{l+1} \text { with } e \neq e^{\prime} \\
& y^{\prime} \underset{r}{ } Q R_{n} \\
& \text { solve }\left(y^{\prime}\right)^{e^{\prime}}=x^{\prime} f^{h(m)} \\
& \text { for } x^{\prime} \\
& \text { solve } y^{e}=x f^{h\left(x^{\prime}\right)} \\
& \quad \text { for } y \\
& s=\left(e, y, y^{\prime}\right) \\
& \hline
\end{aligned}
$$

(s)

Verify
($p k, m, s$)
verify $e \neq e^{\prime}$
verify e is odd
verify $\operatorname{len}(e)=I+1$
compute $x^{\prime}=\left(y^{\prime}\right)^{e^{\prime}} f-h(m)$
$b=\left(x=y^{e} f^{-h\left(x^{\prime}\right)}\right)$
(b)
$\mathbb{P}_{\prime^{\prime}}^{*}$ refers to the set of all safe primes with bitlength I^{\prime}, whereas \mathbb{P}_{l+1} refers to the set of all primes with bitlength $I+1$

14. Digital Signatures

14.3 Identity-Based Signatures

■ In the early 1980s, Adi Shamir came up with the idea of identity-based cryptography and proposed a respective DSS

- A trusted authority chooses an RSA modulus n (with prime factors p and q), a large integer e with $\operatorname{gcd}(e, \phi(n))$, and a one-way function f as domain parameters
- For every user, it derives a public key pk from the user's identity, and computes the respective private key $s k$ as the e-th root of $p k$ modulo n, i.e., $s k^{e} \equiv p k(\bmod n)$
- It can do so, only because it knows the prime factorization of n

14. Digital Signatures

14.3 Identity-Based Signatures

- To sign message $m \in \mathbb{Z}_{n}$, the user selects $r \in_{R} \mathbb{Z}_{n}$ and computes $t=r^{e} \bmod n$ and $s=\left(s k \cdot r^{f(t, m)}\right) \bmod n$
- The signature is (s, t)
- It is valid, if $s^{e} \equiv p k \cdot t^{f(t, m)}(\bmod n)$ holds

$$
\begin{aligned}
s^{e} & \equiv\left(s k \cdot r^{f(t, m)}\right)^{e}(\bmod n) \\
& \equiv s k^{e} r^{e f(t, m)}(\bmod n) \\
& \equiv p k \cdot t^{f(t, m)}(\bmod n)
\end{aligned}
$$

14. Digital Signatures

14.3 Identity-Based Signatures

■ Shamir's identity-based DSS has fueled a lot of research and development in identity-based cryptography

- Many other identity-based DSS have been proposed (but only a few IBE systems)
- Main disadvantages
- Unique naming scheme is needed
- Trusted authority is needed (to issue public key pairs)
- Key revocation is still needed

14. Digital Signatures
 14.4 One-Time Signatures

■ In a one-time signature system a public key pair can be used to sign a single message

- If the pair is reused, then it may become feasible to forge a signature
- The advantages are related to simplicity and efficiency
- The disadvantages are related to the size of the verification key(s) and the overhead related to key management
- One-time signatures are often combined with techniques to efficiently authenticate public keys, such as Merkle trees

14. Digital Signatures
 14.4 One-Time Signatures

■ Historically, the first one-time signature system was proposed by Michael O. Rabin in 1978

- The system employed a symmetric encryption system and was too inefficient to be used in practice
■ In 1979, Leslie Lamport proposed a system that is efficient because it only employs a one-way function f
- If combined with techniques to efficiently authenticate public verification keys (e.g., Merkle trees), the resulting one-time signature system is practical

14. Digital Signatures

14.4 One-Time Signatures

■ Let f be a one-way function and m a message to be signed
■ Let the bitlength of m be at most n, e.g., 128 or 160 bits (otherwise m is first hashed)

- The signatory must have a private key that consists of n pairs of randomly chosen preimages for f :

$$
\left[u_{10}, u_{11}\right],\left[u_{20}, u_{21}\right], \ldots,\left[u_{n 0}, u_{n 1}\right]
$$

- Each $u_{i j}(i=1, \ldots, n$ and $j=0,1)$ may be an n-bit string
- The $2 n$ arguments may be generated with a PRG

14. Digital Signatures

14.4 One-Time Signatures

- The respective public key consists of the $2 n$ images $f\left(u_{i j}\right)$:

$$
\left[f\left(u_{10}\right), f\left(u_{11}\right)\right],\left[f\left(u_{20}\right), f\left(u_{21}\right)\right], \ldots,\left[f\left(u_{n 0}\right), f\left(u_{n 1}\right)\right]
$$

- The $2 n$ images $f\left(u_{i j}\right)$ are hashed to a single value p that represents the public key:

$$
p=h\left(f\left(u_{10}\right), f\left(u_{11}\right), f\left(u_{20}\right), f\left(u_{21}\right), \ldots, f\left(u_{n 0}\right), f\left(u_{n 1}\right)\right)
$$

- Complementary techniques to efficiently authenticate verification keys are needed for multiple signatures

14. Digital Signatures

14.4 One-Time Signatures

- To sign message m, each bit $m_{i}(i=1, \ldots, n)$ must be individually signed using the preimage pair $\left[u_{i 0}, u_{i 1}\right]$
- If $m_{i}=0$, the signature comprises u_{i}
- If $m_{i}=1$, the signature comprises $u_{i 1}$
- The signature s for m comprises all such values

$$
s=\left[u_{1 m_{1}}, u_{2 m_{2}}, \ldots, u_{n m_{n}}\right]
$$

- It can be verified by computing all images $f\left(u_{i j}\right)$, hashing all values to p^{\prime}, and comparing p^{\prime} with p (it is valid if $p^{\prime}=p$)

14. Digital Signatures

14.4 One-Time Signatures

Cryptography 101: From Theory to Practice

14. Digital Signatures
 14.4 One-Time Signatures

■ Exemplary one-time signature for message $m=0110$

- Message bit m_{1} is signed with u_{10}, m_{2} with u_{21}, m_{3} with u_{31}, and m_{4} with u_{40}

14. Digital Signatures
 14.4 One-Time Signatures

- There are several possibilities to generalize and improve the Lamport one-time DSS
- Some improvements are due to Merkle

■ Other improvements have been proposed recently to make one-time signatures suitable for PQC (e.g., SPHINCS+)

- The Lamport one-time DSS and some variants are used in many cryptographic applications (e.g., anonymous offline digital cash)

14. Digital Signatures

14.5 Variants

- Blind signatures
- Undeniable signatures
- Fail-stop signatures
- Group signatures (ring signatures)

14. Digital Signatures

14.6 Final Remarks

- Digital signatures provide the digital analog of handwritten signatures
- They are necessary to provide nonrepudiation services
- Many countries and communities have legislation
- U.S. Electronic Signatures in Global and National Commerce Act, commonly referred to as ESIGN (2000)
- European Electronic Identification and Trust Services Regulation, commonly referred to as eIDAS (2014)
■ This also applies to Switzerland (OFCOM)

14. Digital Signatures

14.6 Final Remarks

- But the laws on electronic or digital signatures have not yet been disputed in court
- It is therefore not clear what their legal status is

■ Signatures always depend on many layers of hardware and software

- On each of these layers (including the user on top of them), many things can go wrong
- The mathematical precision of digital signatures in theory is blurred in practice

Questions and Answers

Thank you for your attention

