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14. Digital Signatures
14.1 Introduction

DSS with appendix (cf. Definition 2.13)
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14. Digital Signatures
14.1 Introduction

DSS giving message recovery (cf. Definition 2.14)
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14. Digital Signatures
14.1 Introduction

A DSS must be correct and sound (secure)

It is correct if every valid signature is accepted
It is sound if no invalid siganture is accepted, i.e., it is
computationally infeasible to forge a signature

A proper security definition must specify

1 The adversary’s capabilities
2 The task the adversary is required to solve in order to be

successful (i.e., to break the security of the system)
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14. Digital Signatures
14.1 Introduction

1 Classes of attacks (increasing power)

Key-only attacks
Known-message attacks (KMA)
Chosen-message attacks (CMA)

Nonadaptive
Adaptive

2 Types of forgery (decreasing difficulty)

Universal forgery
Selective forgery
Existential forgery

cbd Rolf Oppliger 11

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 14 – Digital Signatures

14. Digital Signatures
14.1 Introduction

A provably secure DSS protects against existential forgery
under an adaptive CMA

This is the strongest notion of security

The respective proof can be in the standard or random oracle
model

Most provably secure DSS follow the hash-and-sign
paradigm

A message is first hashed and then signed using a variant of a
basic DSS, such as RSA, Rabin, or Elgamal
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14. Digital Signatures
14.2 Digital Signature Systems

RSA

PSS and PSS-R

Rabin

Elgamal

Schnorr

DSA

ECDSA

Cramer-Shoup
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14. Digital Signatures
14.2 Digital Signature Systems — RSA

Table 14.1
RSA DSS with Appendix

Domain parameters: —

Generate

(1l )

p, q
r← Pl/2

n = p · q
select 1 < e < φ(n)

with gcd(e, φ(n)) = 1
compute 1 < d < φ(n)

with de ≡ 1 (mod φ(n))

((n, e), d)

Sign

(d,m)

s = (h(m)d ) mod n

(s)

Verify

((n, e),m, s)

t = h(m)
t′ = se mod n
b = (t = t′)

(b)
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14. Digital Signatures
14.2 Digital Signature Systems — RSA

Toy example

The Generate algorithm selects p = 11 and q = 23, computes
n = 11 · 23 = 253 and φ(253) = 10 · 22 = 220, selects e = 3,
and computes d = 147 modulo 220
[3 · 147 = 441 ≡ 1 (mod 220)]
(253, 3) is the public key, whereas 147 is the private key
To digitally sign a message m with h(m) = 26, the Sign
algorithm computes s = 26147 mod 253 = 104
To verify the signature, the Verify algorithm computes
t = h(m) and t ′ = RSA253,3(104) = 1043 mod 253 = 26, and
returns valid (because t = t ′ = 26)
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14. Digital Signatures
14.2 Digital Signature Systems — RSA

Since h(m) is typically much shorter than the modulus n, it is
necessary to expand h(m) to the bitlength of n

This can be done by prepending zeros or using a distinct
message expansion function (e.g., PKCS #1)

Since PKCS #1 version 1.5, this function is

hPKCS#1(m) = 0x00 01 FF FF . . . FF FF 00 ‖ hID ‖ h(m)

PSS and PSS-R use a more sophisticated message expansion
function (see below)
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14. Digital Signatures
14.2 Digital Signature Systems — RSA

If RSA is used as a DSS giving message recovery, then the
Recover algorithm must first compute

m = RSAn,e(s) = se mod n

and then decide whether m is a valid message

Either the message is constructed in a natural language (that
contains enough redundancy) or a redundancy scheme is used
(e.g., m ‖ m instead of m)
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14. Digital Signatures
14.2 Digital Signature Systems — RSA

The security of the RSA DSS depends on the properties of
the RSA family of trapdoor permutations

If one is able to factorize n, then one is also able to determine
the private signing key sk and (universally) forge signatures

Consequently, n must be so large that its factorization is
computationally infeasible

This means that |n| ≥ 2,048 bits (or even 4,096 bits for
high-value data)
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14. Digital Signatures
14.2 Digital Signature Systems — RSA

The multiplicative structure of the RSA function may be
problematic in some application settings

If m1 and m2 are two messages with signatures s1 and s2, then

s ≡ s1s2 ≡ md
1m

d
2 ≡ (m1m2)d mod n

is a valid signature for m = (m1m2) mod n

Good practice in security engineering must take care of the
multiplicative structure of the RSA function
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

Similar to OAEP in asymmetric encryption, PSS is a padding
scheme that can be combined with a basic DSS, like RSA

The resulting DSS is acronymed RSA-PSS

RSA-PSS is provably secure in the radnom oracle model

If PSS is combined with another DSS X, then the resulting
DSS is acronymed X-PSS

Examples include Rabin-PSS and Elgamal-PSS (not used in
the field)
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

The RSA key generation algorithm Generate prevails

Additional parameters and functions

If l is the bitlength of n, then l0 and l1 are numbers between 1
and l (e.g., l = 1, 024 and l0 = l1 = 128)
h : {0, 1}∗ → {0, 1}l1 is a “normal” hash function (compressor)
g : {0, 1}l1 → {0, 1}l−l1−1 is an XOF (generator)

w

g (w)g (w)

g

1 2

l1

l0 l - l  - l  - 10 1
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

Preparation of argument for the RSA-PSS Sign algorithm

m r

0 w r* g (w)2

g (w)1

+

g
2

g1h
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

Table 14.2
RSA-PSS

Domain parameters: —

Sign

(d,m)

r
r←− {0, 1}l0

w = h(m ‖ r)
r∗ = g1(w)⊕ r
y = 0 ‖ w ‖ r∗ ‖ g2(w)

s = yd mod n

(s)

Verify

((n, e),m, s)

y = se mod n
break up y as b ‖ w ‖ r∗ ‖ γ
r = r∗ ⊕ g1(w)
b = (b = 0 ∧ h(m ‖ r) = w ∧ g2(w) = γ)

(b)
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

RSA-PSS is only slightly more expensive than basic RSA

It was added in version 2.1 of PKCS #1

The encoding method is referred to as EMSA-PSS

EMSA-PSS stands for Encoding Method for Signature with
Appendix

PKCS #1 version 2.1 (EMSA-PSS) is widely used in the field

It represents a (still) viable alternative for ECDSA
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

PSS-R yields a DSS giving message recovery

RSA-PSS-R uses the same parameters l , l0, and l1, and the
same hash functions h and g (with g1 and g2)

The messages to be signed have a maximum length
k = l − l0 − l1 − 1

Suggested choices are l = 1, 024, l0 = l1 = 128, and k = 767

This means that a 767-bit message m can be folded into the
signature
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

Preparation of argument for the RSA-PSS-R Sign algorithm

m r

0 w r*

g (w)2

g (w)1

+

g
2

g1

m*

+

h
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14. Digital Signatures
14.2 Digital Signature Systems — PSS and PSS-R

Table 14.3
RSA-PSS-R

Domain parameters: —

Sign

(d,m)

r
r←− {0, 1}l0

w = h(m ‖ r)
r∗ = g1(w)⊕ r
m∗ = g2(w)⊕ m
y = 0 ‖ w ‖ r∗ ‖ m∗

s ≡ yd (mod n)

(s)

Recover

((n, e), s)

y ≡ se (mod n)
break up y as b ‖ w ‖ r∗ ‖ m∗

r = r∗ ⊕ g1(w)
m = m∗ ⊕ g2(w)
if (b = 0 and h(m ‖ r) = w)

then output m
else output invalid

(m | invalid)
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14. Digital Signatures
14.2 Digital Signature Systems — Rabin

The Rabin public key cryptosystem yields another DSS

It takes its security from the fact that computing square roots
modulo n is computationally equivalent to factoring n

Depending on its implementation (and the way the U-values
are chosen), the Rabin DSS can be made provably secure in
the random oracle model
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14. Digital Signatures
14.2 Digital Signature Systems — Rabin

Table 14.4
Rabin DSS with Appendix (Simplified Version)

Domain parameters: —

Generate

(1l )

p, q
r← P′l/2

n = p · q

(n, (p, q))

Sign

((p, q),m)

find U such that h(m ‖ U)
is a square modulo n

find x that satisfies

x2 ≡ h(m ‖ U) (mod n)

(U, x)

Verify

(n,m, (U, x))

b = (x2 ≡ h(m ‖ U) (mod n))

(b)

Again, P′
l/2

refers to the set of all l/2-bit primes that are equivalent to 3 modulo 4 (so

n is an l-bit Blum integer)
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14. Digital Signatures
14.2 Digital Signature Systems — Elgamal

The Elgamal public key cryptosystem yields another DSS with
appendix

A variant proposed by Kaisa Nyberg and Rainer R. Rueppel
yields a DSS giving message recovery

In contrast to RSA, the Elgamal DSS uses different algorithms
and signatures that are twice as long as the modulus

It is therefore not widely used in the field

It is defined in a cyclic group in which the DLP is
computationally intractable, such as Z∗p (original proposal)
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14. Digital Signatures
14.2 Digital Signature Systems — Elgamal

Table 14.5
Elgamal DSS with Appendix

Domain parameters: p, g

Generate

(−)

x
r← {2, . . . , p − 2}

y = gx mod p

(x, y)

Sign

(x,m)

r
r← {1, . . . , p − 2}

with gcd(r, p − 1) = 1
s1 = g r mod p

s2 = (r−1(h(m)− xs1))
mod (p − 1)

(s1, s2)

Verify

(y,m, (s1, s2))

verify 0 < s1 < p
verify 0 < s2 < p − 1

b = (gh(m) ≡ y s1 s
s2
1 (mod p))

(b)
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Chapter 14 – Digital Signatures

14. Digital Signatures
14.2 Digital Signature Systems — Elgamal

The verification is correct, because

y s1ss2
1 ≡ g xs1g rr−1(h(m)−xs1) (mod p)

≡ g xs1gh(m)−xs1 (mod p)

≡ g xs1g−xs1gh(m) (mod p)

≡ gh(m) (mod p)
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14. Digital Signatures
14.2 Digital Signature Systems — Elgamal

Toy example

For p = 17 (Z∗17) and g = 7, the Generate algorithm selects
x = 6 and computes y = 76 mod 17 = 9
9 is the public key and 6 is the private key
To digitally sign m with h(m) = 6, the Sign algorithm selects
r = 3 (with r−1 ≡ 3−1 (mod 16) = 11) and computes

s1 = 73 mod 17 = 343 mod 17 = 3

s2 = (11(6− 6 · 3)) mod 16 = −132 mod 16 = 12

The signature is (3,12)
The Verify algorithm must verify 0 < 3 < 17, 0 < 12 < 16,
and 76 ≡ 93 · 312 (mod 17), which is 9 in either case
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14. Digital Signatures
14.2 Digital Signature Systems — Elgamal

The security of the Elgamal public key cryptosystem is based
on the assumed intractability of the DLP in a cyclic group

In Z∗p, p must be at least 2,048 bits

Furthermore, one must select p so that efficient algorithms to
compute discrete logarithms do not work

For example, p − 1 must not have only small prime factors
(otherwise, the Pohlig-Hellman algorithm can be applied)

Furthermore, h must be a cryptographic hash function and r
must be unique and unpredictable

cbd Rolf Oppliger 34

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 14 – Digital Signatures

14. Digital Signatures
14.2 Digital Signature Systems — Schnorr

Claus-Peter Schnorr proposed the use of a q-order subgroup
G of Z∗p with q | p − 1 (Schnorr group)

For example, for p = 23 and q = (23− 1)/2 = 11, g = 2 is a
generator of the Schnorr group {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}
with 11 elements (g = 4 is another generator)

All computations are done in the Schnorr group

Originally, |p|= 1,024 bits and |q|=160 bits

The Schnorr DSS is more efficient and the signatures are
shorter (2 · 160 = 320 instead of 2 · 2, 048 = 4, 096 bits)
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14. Digital Signatures
14.2 Digital Signature Systems — Schnorr

Unlike Elgamal, the Schnorr DSS relies on the DLP in the
q-order subgroup of Z∗p
This problem can only be solved with a generic algorithm

Such an algorithm has a running time that is of the order of
the square root of q

For |q|=160 bits, the subgroup has order 2160 and the running
time is of the order of

√
2160 = 2160/2 = 280

The Schnorr DSS is with appendix, but it can be turned into
a DSS giving message recovery (not addressed here)
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14. Digital Signatures
14.2 Digital Signature Systems — Schnorr

Table 14.6
Schnorr DSS

Domain parameters: p, q, g

Generate

(−)

x
r← Z∗q

y = gx mod p

(x, y)

Sign

(x,m)

r
r← Z∗q

r′ = g r mod p
s1 = h(r′ ‖ m)
s2 = (r + xs1) mod q

(s1, s2)

Verify

(y,m, (s1, s2))

u = (g s2 y−s1 ) mod p
v = h(u ‖ m)
b = (v = s1)

(b)
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Chapter 14 – Digital Signatures

14. Digital Signatures
14.2 Digital Signature Systems — Schnorr

The verification is correct, because v = s1 suggests that
h(u ‖ m) = h(r ′ ‖ m) and hence u = r ′

This equation is true, because

u = (g s2y−s1) mod p

= (g r+xs1g−xs1) mod p

= (g rg xs1g−xs1) mod p

= g r mod p

= r ′
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Chapter 14 – Digital Signatures

14. Digital Signatures
14.2 Digital Signature Systems — Schnorr

Toy example

For p = 23, q = 11, and g = 2 (see above), the Generate
algorithm selects x = 5 and computes y = 25 mod 23 = 9
9 is the public key and 5 is the private key
To digitally sign m, the Sign algorithm selects r = 7 and
computes r ′ = 27 mod 23 = 13
If h(r ′ ‖ m) = 4, then s1 = 4 and s2 = (7 + 5 · 4) mod 11 = 5
The signature is (4,5)
The Verify algorithm computes u = (25 · 9−4) mod 23 = 13
and v = h(13 ‖ m) = 4, and accepts the signature (because
v = s1 = 4)
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14. Digital Signatures
14.2 Digital Signature Systems — DSA

Based on the DSS of Elgamal and Schnorr, NIST developed
the digital signature algorithm (DSA) and digital signature
standard (DSS) in FIPS PUB 186

Since its publication in 1994, FIPS PUB 186 has been subject
to 4 major revisions in 1998, 2000, 2009, and 2013

Originally, p had a variable bitlength (512 + 64t bits for
t ∈ {0, . . . , 8}), and q was fixed to 160 bits

More recent revisions of FIPS PUB 186 support longer
bitlengths for p and q, as well as RSA and ECDSA
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14. Digital Signatures
14.2 Digital Signature Systems — DSA

Table 14.7
DSA

Domain parameters: p, q, g

Generate

(−)

x
r← Z∗q

y = gx mod p

(x, y)

Sign

(x,m)

r
r← Z∗q

s1 = (g r mod p) mod q

s2 = r−1(h(m) + xs1) mod q

(s1, s2)

Verify

(y,m, (s1, s2))

verify 0 < s1, s2 < q

w = s−1
2 mod q

u1 = (h(m)w) mod q
u2 = (s1w) mod q
v = (gu1 yu2 mod p) mod q
b = (v = s1)

(b)
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Chapter 14 – Digital Signatures

14. Digital Signatures
14.2 Digital Signature Systems — DSA

Toy example

For p = 23, q = 11, and g = 4, the Generate algorithm selects
x = 3 and computes y = 43 mod 23 = 18
18 is the public key and 3 is the private key
To digitally sign m with h(m) = 6, the Sign algorithm selects
r = 7, computes s1 = (47 mod 23) mod 11 = 8, determines
r−1 = 7−1 mod 11 = 8, and computes
s2 = 8(6 + 8 · 3) mod 11 = 9
The signature is (8,9)
The Verify algorithm verifies that 0 < 8, 9 < 11, computes
w = 9−1 mod 11 = 5, u1 = (6 · 5) mod 11 = 8,
u2 = (8 · 5) mod 11 = 7, and v = (48187 mod 23) mod 11 = 8,
and returns valid (because v = s1 = 8)
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14. Digital Signatures
14.2 Digital Signature Systems — ECDSA

ECDSA refers to the elliptic curve variant of DSA

Instead of working in a q-order subgroup of Z∗p, it works in a
group of points on an elliptic curve over a finite field Fq, i.e.,
E (Fq), where q is an odd prime or a power of 2

Today, ECDSA is most widely deployed in the field

It has been adopted in many standards, including ANSI X9.62,
NIST FIPS 186, ISO/IEC 14888, IEEE 1363-2000, and the
standards for efficient cryptography (SEC) 1 and 2
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14. Digital Signatures
14.2 Digital Signature Systems — ECDSA

Table 14.8
ECDSA

Domain parameters: Curve, G , n

Generate

(−)

d
r← Z∗n

Q = dG

(d,Q)

Sign

(d,m)

z = h(m) |len(n)

r
r← Z∗n

(x1, y1) = rG
s1 = x1 mod n

s2 = r−1(z + s1d) mod n

(s1, s2)

Verify

(Q,m, (s1, s2))

verify legitimacy of Q
verify 0 < s1, s2 < n
z = h(m) |len(n)

w = s−1
2 mod n

u1 = (zw) mod n
u2 = (s1w) mod n
(x1, y1) = u1G + u2Q
b = ((x1, y1) 6= O) ∧ (s1 = x1)

(b)
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14. Digital Signatures
14.2 Digital Signature Systems — ECDSA

Toy example (Curve = E (Z23), G = (3, 10), n = 28)

The Generate algorithm randomly selects d = 3 and computes
Q = 3 · G = 3 · (3, 10) = (19, 5)
(19, 5) is the public key and 3 is the private key
To digitally sign m, whose leftmost len(n) bits of h(m) refers
to z = 5, the Sign algorithm randomly selects r = 11, and
computes 11 · G = (18, 20), s1 = 18, and
s2 = 23(5 + 18 · 3) mod 28 = 13
The signature is (18,13)
The Verify algorithm verifies 0 < 18, 13 < 28, computes
w = 13, u1 = (5 · 13) mod 28 = 9,
u2 = (18 · 13) mod 28 = 10, and 9 · G + 10 · Q = (18, 20)
Because this point is 6= O and its x-coordinate equals s1, the
algorithm returns valid
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14. Digital Signatures
14.2 Digital Signature Systems — ECDSA

Unlike the DSA, the ECDSA is provably secure, i.e., it
protects against existential forgery under an adaptive CMA

The proof is in the random oracle model

Like Elgamal and all variants, r must be unique and
unpredictable

Dan Boneh, Ben Lynn, and Hovav Shacham proposed a
variant of ECDSA based on bilinear maps (BLS)

Because such signatures are very short (160 bits) and can be
aggregated, they are widely used in blockchain applications
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14. Digital Signatures
14.2 Digital Signature Systems — Cramer-Shoup

All practical DSS addressed so far have either no security
proof or “only” a security proof in the random oracle model

This is different with the Cramer-Shoup DSS

This DSS is practical and can be proven secure in the
standard model under the strong RSA assumption

There is also a variant that can be proven secure in the
random oracle model under the standard RSA assumption
(not addressed here)
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14. Digital Signatures
14.2 Digital Signature Systems — Cramer-Shoup

Table 14.9
Cramer-Shoup DSS

Domain parameters: l, l′ (e.g., l = 160 and l′ = 512)

Generate

(−)

p, q
r←− P∗

l′
n = pq

f , x
r←− QRn

e′
r←− Pl+1

pk = (n, f , x, e′)
sk = (p, q)

(pk, sk)

Sign

(sk,m)

e
r←− Pl+1 with e 6= e′

y′
r←− QRn

solve (y′)e
′

= x′f h(m)

for x′

solve ye = xf h(x′)

for y
s = (e, y, y′)

(s)

Verify

(pk,m, s)

verify e 6= e′

verify e is odd
verify len(e) = l + 1

compute x′ = (y′)e
′
f−h(m)

b = (x = ye f−h(x′))

(b)

P∗
l′ refers to the set of all safe primes with bitlength l ′, whereas Pl+1 refers to the set

of all primes with bitlength l + 1
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14. Digital Signatures
14.3 Identity-Based Signatures

In the early 1980s, Adi Shamir came up with the idea of
identity-based cryptography and proposed a respective DSS

A trusted authority chooses an RSA modulus n (with prime
factors p and q), a large integer e with gcd(e, φ(n)), and a
one-way function f as domain parameters
For every user, it derives a public key pk from the user’s
identity, and computes the respective private key sk as the e-th
root of pk modulo n, i.e., ske ≡ pk (mod n)
It can do so, only because it knows the prime factorization of n
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14. Digital Signatures
14.3 Identity-Based Signatures

To sign message m ∈ Zn, the user selects r ∈R Zn and
computes t = r e mod n and s = (sk · r f (t,m)) mod n

The signature is (s, t)

It is valid, if se ≡ pk · t f (t,m) (mod n) holds

se ≡ (sk · r f (t,m))e (mod n)

≡ sker ef (t,m) (mod n)

≡ pk · t f (t,m) (mod n)
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14. Digital Signatures
14.3 Identity-Based Signatures

Shamir’s identity-based DSS has fueled a lot of research and
development in identity-based cryptography

Many other identity-based DSS have been proposed (but only
a few IBE systems)

Main disadvantages

Unique naming scheme is needed
Trusted authority is needed (to issue public key pairs)
Key revocation is still needed
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14. Digital Signatures
14.4 One-Time Signatures

In a one-time signature system a public key pair can be used
to sign a single message

If the pair is reused, then it may become feasible to forge a
signature

The advantages are related to simplicity and efficiency

The disadvantages are related to the size of the verification
key(s) and the overhead related to key management

One-time signatures are often combined with techniques to
efficiently authenticate public keys, such as Merkle trees
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14. Digital Signatures
14.4 One-Time Signatures

Historically, the first one-time signature system was proposed
by Michael O. Rabin in 1978

The system employed a symmetric encryption system and was
too inefficient to be used in practice

In 1979, Leslie Lamport proposed a system that is efficient
because it only employs a one-way function f

If combined with techniques to efficiently authenticate public
verification keys (e.g., Merkle trees), the resulting one-time
signature system is practical
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14. Digital Signatures
14.4 One-Time Signatures

Let f be a one-way function and m a message to be signed

Let the bitlength of m be at most n, e.g., 128 or 160 bits
(otherwise m is first hashed)

The signatory must have a private key that consists of n pairs
of randomly chosen preimages for f :

[u10, u11], [u20, u21], . . . , [un0, un1]

Each uij (i = 1, . . . , n and j = 0, 1) may be an n-bit string

The 2n arguments may be generated with a PRG
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14. Digital Signatures
14.4 One-Time Signatures

The respective public key consists of the 2n images f (uij):

[f (u10), f (u11)], [f (u20), f (u21)], . . . , [f (un0), f (un1)]

The 2n images f (uij) are hashed to a single value p that
represents the public key:

p = h(f (u10), f (u11), f (u20), f (u21), . . . , f (un0), f (un1))

Complementary techniques to efficiently authenticate
verification keys are needed for multiple signatures
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14. Digital Signatures
14.4 One-Time Signatures

To sign message m, each bit mi (i = 1, . . . , n) must be
individually signed using the preimage pair [ui0, ui1]

If mi = 0, the signature comprises ui0
If mi = 1, the signature comprises ui1

The signature s for m comprises all such values

s = [u1m1 , u2m2 , . . . , unmn ]

It can be verified by computing all images f (uij), hashing all
values to p′, and comparing p′ with p (it is valid if p′ = p)
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14. Digital Signatures
14.4 One-Time Signatures
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14. Digital Signatures
14.4 One-Time Signatures

Exemplary one-time signature for message m = 0110

Message bit m1 is signed with u10, m2 with u21, m3 with u31,
and m4 with u40

p

seed

u
10

u
31

u
21

u
40
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14. Digital Signatures
14.4 One-Time Signatures

There are several possibilities to generalize and improve the
Lamport one-time DSS

Some improvements are due to Merkle

Other improvements have been proposed recently to make
one-time signatures suitable for PQC (e.g., SPHINCS+)

The Lamport one-time DSS and some variants are used in
many cryptographic applications (e.g., anonymous offline
digital cash)
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14. Digital Signatures
14.5 Variants

Blind signatures

Undeniable signatures

Fail-stop signatures

Group signatures (ring signatures)

. . .
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14. Digital Signatures
14.6 Final Remarks

Digital signatures provide the digital analog of handwritten
signatures

They are necessary to provide nonrepudiation services

Many countries and communities have legislation

U.S. Electronic Signatures in Global and National Commerce
Act, commonly referred to as ESIGN (2000)
European Electronic Identification and Trust Services
Regulation, commonly referred to as eIDAS (2014)

This also applies to Switzerland (OFCOM)
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14. Digital Signatures
14.6 Final Remarks

But the laws on electronic or digital signatures have not yet
been disputed in court

It is therefore not clear what their legal status is

Signatures always depend on many layers of hardware and
software

On each of these layers (including the user on top of them),
many things can go wrong

The mathematical precision of digital signatures in theory is
blurred in practice
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Questions and Answers
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Thank you for your attention

cbd Rolf Oppliger 64

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

	Chapter 14 – Digital Signatures

