Cryptography 101: From Theory to Practice

Chapter 17 – Summary

Rolf Oppliger

April 6, 2022

Terms of Use

- This work is published with a CC BY-ND 4.0 license (◎④)
 - CC = Creative Commons (ⓒ)
 - BY = Attribution ()
 - ND = No Derivatives (⑤)

whoami

rolf-oppliger.ch
rolf-oppliger.com

- Swiss National Cyber Security Centre NCSC (scientific employee)
- eSECURITY Technologies Rolf Oppliger (founder and owner)
- University of Zurich (adjunct professor)
- Artech House (author and series editor for information security and privacy)

Reference Book

© Artech House, 2021 ISBN 978-1-63081-846-3

https://books.esecurity.ch/crypto101.html

Challenge Me

Outline

17. Summary

- 1 Introduction
- Cryptographic Systems
- 3 Random Generators
- 4 Random Functions
- One-Way Functions
- 6 Cryptographic Hash Functions
- Pseudorandom Generators
- Pseudorandom Functions
- 9 Symmetric Encryption
- 10 Message Authentication
- 11 Authenticated Encryption
- 12 Key Establishment
- 13 Asymmetric Encryption
- 14 Digital Signatures
- 15 Zero-Knowledge Proofs of Knowledge
- 16 Key Management
- 18 Outlook

- 17.1 Unkeyed Cryptosystems
- 17.2 Secret Key Cryptosystems
- 17.3 Public Key Cryptosystems
- 17.4 Final Remarks

17.1 Unkeyed Cryptosystems

- Random generators (→ Chapter 3)
- Random functions (→ Chapter 4)
- One-way functions (→ Chapter 5)
- Cryptographic hash functions (→ Chapter 6)

17.2 Secret Key Cryptosystems

- Pseudorandom generators (→ Chapter 7)
- Pseudorandom functions (→ Chapter 8)
- Symmetric encryption (→ Chapter 9)
- Message authentication (\rightarrow Chapter 10)
- Authenticated encryption (→ Chapter 11)

17.3 Public Key Cryptosystems

- Key establishment (→ Chapter 12)
- Asymmetric encryption (→ Chapter 13)
- Digital signatures (→ Chapter 14)
- $lue{}$ Zero-knowledge proofs of knowledge (ightarrow Chapter 15)

17.4 Final Remarks

- In practice, unkeyed, secret key, and public key cryptosystems are combined to complement each other (e.g., hybrid systems)
- Public key cryptosystems are used for authentication and key distribution, whereas secret key cryptosystems are used for bulk data encryption and message authentication
- Consequently, applications typically combine all types of cryptosystems to come up with a design that can be implemented in an efficient and secure way
- Key management is the Achilles' heel

17.4 Final Remarks

- It is sometimes argued that public key cryptography is inherently more secure than secret key cryptography
- This argument is wrong
- There are secure and insecure public key and secret key cryptosystems
- If one has to decide what cryptosystem to use, then one has to look at the requirements from an application's point of view
- There is no single best cryptosystem to be used for all purposes and applications (i.e., no "one size fits all" solution)

Questions and Answers

Thank you for your attention

