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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random generators

Randomness is by far the most important ingredient for
cryptography

Almost all cryptographic systems in use today depend on
some form of randomness

Definition 2.1 (Random generator)

A device that outputs a sequence of statistically independent and
unbiased values

If the output values are bits, then it is a random bit generator
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random generators

A random generator has no input and only generates an
output (e.g., a sequence of statistically independent and
unbiased bits)

All bits occur with the same probability, i.e., Pr[0] =
Pr[1] = 1/2
All 2k k-tuples of bits occur with the same probability 1/2k

Statistical tests can be used to verify these properties (or
detect statistical defects, respectively)

cbd Rolf Oppliger 10

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 2 – Cryptographic Systems

2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random generators

A random generator cannot be implemented in a purely
deterministic way

Instead, it is inherently nondeterministic, meaning that an
implementation must use some physical events or phenomena

Alternatively speaking, every (true) random generator requires
a naturally occurring source of randomness

The proper use of this source is a challenging engineering task

Random generators and their security properties are further
addressed in Chapter 3
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random functions

A random generator is to output random-looking values

In contrast, a random function (or random oracle) is not
characterized by its output, but rather by the way it is chosen
from a set of functions

Definition 2.2 (Random function)

A function f : X → Y that is chosen randomly from Funcs[X ,Y ],
i.e., the set of all functions that map elements of domain X to
elements of codomain Y
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random functions

For input value x ∈ X , a random
function can output any value
y = f (x) ∈ f (X ) ⊆ Y

The only requirement is that the
same input value x must always
map to the same output value y

Note that there are |Y ||X | functions
in Funcs[X ,Y ], and that this
number is incredibly large (even for
moderately sized X and Y )

Elements of Funcs[{a, b}, {1, 2, 3}]
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random functions

If X = {a, b} and Y = {1, 2, 3}, then Funcs[X ,Y ] comprises
32 = 9 functions (see above)

If X refers to all 2-bit strings and Y refers to all 3-bit strings,
then |X | = 22 and |Y | = 23, i.e., Funcs[X ,Y ] comprises
(23)2

2
= (23)4 = 212 = 4, 096 elements

If X and Y both refer to all 128-bit strings, then Funcs[X ,Y ]
comprises (2128)2

128
= 2128·2

128
= 22

7·2128 = 22
135

elements

If one wanted to number the functions and use an index to
refer to a particular function, then this index would be 2135

bits long
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random functions

Random functions are conceptual constructs that are mainly
used in security proofs (they are not meant to be
implemented)

Referring to the ideal/real simulation paradigm, the random
function yields the ideal system and it is shown that no
adversary can tell a real system apart from it

This means that the real system behaves like a random
function, and hence an adversary must try out all possibilities

This is computationally infeasible, and hence the real system
is believed to be secure
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Random functions

If X = Y and Funcs[X ,X ] is restricted to the set of all
permutations of X , i.e., Perms[X ], then a random
permutation is a randomly chosen permutation from
Perms[X ]

|Perms[X ]| = |X |! also grows incredibly fast

Most statements that apply to random functions also apply to
random permutations

Random functions and random permutations are further
addressed in Chapter 4
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – One-way functions

Informally speaking, a function f : X → Y is one way if it is
easy to compute but hard to invert

Referring to complexity theory, easy means that the
computation can be done efficiently (i.e., in polynomial time),
whereas hard means that it is not known how to do the
computation efficiently, i.e., no efficient algorithm is known

Definition 2.3 (One-way function)

A function f : X → Y of which f (x) can be computed efficiently
for all x ∈ X , but f −1(f (x)) cannot be computed efficiently, i.e.,
f −1(y) cannot be computed efficiently for y ∈R Y
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – One-way functions
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – One-way functions

There are many real-world examples of one-way functions

In a telephone book, the function that assigns a telephone
number to each name is easy to compute (because the names
are sorted alphabetically) but hard to invert (because the
telephone numbers are not sorted numerically)

Many physical processes are inherently one way

Smashing a bottle into pieces
Dropping a bottle from a bridge
Any time-related process (e.g., aging)
. . .
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – One-way functions

In contrast to the real world, there are only a few
mathematical functions conjectured to be one way

Many such functions refer to modular exponentiation, i.e.,

f (x) = g x mod m
f (x) = xe mod m
f (x) = x2 mod m

for some properly chosen modulus m

These functions are heavily used in public key cryptography

Note that no function has been shown to be one way in a
mathematically strong sense, and that it is theoretically not
even known whether one-way functions exist at all

cbd Rolf Oppliger 20

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 2 – Cryptographic Systems

2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – One-way functions

In general, a one-way function cannot be inverted efficiently

But there may be one-way functions that can be inverted
efficiently, if some extra information is known

Definition 2.4 (Trapdoor (one-way) function)

A one-way function f : X → Y that has some extra information
(i.e., trapdoor) with which f can be inverted efficiently, i.e.,
f −1(f (x)) can be computed efficiently for all x ∈ X or f −1(y) can
be computed efficiently for y ∈R Y
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – One-way functions

The mechanical analog of a trapdoor function is a padlock

The functions f (x) = xe mod m and f (x) = x2 mod m have a
trapdoor (i.e., the prime factorization of m), whereas the
function f (x) = g x mod m is not known to have a trapdoor
— if m is prime

If X and Y are the same, then a one-way function f : X → X
that is a permutation, i.e., f ∈ Perms[X ], yields a one-way
permutation

One-way functions, trapdoor functions, one-way permutations,
and trapdoor permutations are further addressed in Chapter 5
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Cryptographic hash functions

Hash functions are widely used in computer science

Informally speaking, a hash function is an efficiently
computable function that takes an arbitrarily large input and
generates an output of a usually much smaller size

Definition 2.5 (Hash function)

A function h : X → Y that can be computed efficiently for all
x ∈ X and |X | � |Y |
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Cryptographic hash functions
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Cryptographic hash functions

The elements of X and Y are typically strings of characters
from a given alphabet

If Σin is the input alphabet and Σout is the output alphabet,
then a hash function h can be written as h : Σ∗in → Σn

out

In many settings, Σin and Σout are the same, typically the
binary alphabet Σ = {0, 1}
In this setting, the hash function h takes as input an
arbitrarily long bitstring and generates as output a bitstring of
fixed size n
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Cryptographic hash functions

In cryptography, one is talking about bitstrings that are
relatively long (typically 256 bits)

A respective hash function must fulfill two requirements

It must be hard to invert, i.e., the function is one-way or
preimage resistant
It must be hard to find a collision, i.e., the function is
second-preimage resistant or collision resistant

Definition 2.6 (Cryptographic hash function)

A hash function h that is either one-way and second-preimage
resistant or one-way and collision resistant
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2. Cryptographic Systems
2.1 Unkeyed Cryptosystems – Cryptographic hash functions

Cryptographic hash functions have many applications

Most importantly, such a function h can be used to hash
arbitrarily sized messages to bitstrings of fixed size

Cryptographic hash functions are addressed in Chapter 6
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems

Pseudorandom generators

Pseudorandom functions

Symmetric encryption

Message authentication

Authenticated encryption
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Pseudorandom generators

If a large number of random values is needed, then it may be
appropriate to use a pseudorandom generator (PRG)
instead of — or in combination with — a true random
generator

Definition 2.7 (PRG)

An efficiently computable function that takes as input a relatively
short value (seed) of length n and generates as output a value of
length l(n) with l(n)� n that appears to be random

If the input and output values are bit sequences, then the PRG is a
pseudorandom bit generator (PRBG)
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Pseudorandom generators

Note that Definition 2.7 is not precise in a mathematically
strong sense (because the statement “appears to be random”
is not properly defined)

Unlike a true random generator, a PRG operates
deterministically, and this means that a PRG always outputs
the same values if seeded with the same input value

A PRG thus represents a finite state machine (FSM), and
the sequence of the generated values needs to be cyclic (with
a potentially very large cycle)

This is why one cannot require that the output of a PRG is
truly random, but only that it appears to be so
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Pseudorandom generators

Formally speaking, a PRBG G is a mapping from K = {0, 1}n to
{0, 1}l(n), where l(n) represents a stretch function, i.e., a function
that stretches an n-bit input value into a longer l(n)-bit output
value with n < l(n) ≤ ∞:

G : K −→ {0, 1}l(n)
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Pseudorandom generators

A PRG is secure, if its output is indistinguishable from the
output of a true random generator (according to the security
game of the ideal/real simulation paradigm)

Pseudorandomness and PRGs are key ingredients and have
many applications in cryptography

Key generation
Additive stream ciphers
. . .

PR(B)Gs are further addressed in Chapter 7
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Pseudorandom functions

A PRG “simulates” a random generator

Similarly, a pseudorandom function (PRF) “simulates” a
random function

Remember that a random function f : X → Y is randomly
chosen from Funcs[X ,Y ], and that the cardinality of this set
is incredibly large, i.e., |Funcs[X ,Y ]| = |Y ||X |

The idea of a PRF is to use a subset of Funcs[X ,Y ] that is
sufficiently small so that one can number its elements and use
a moderately sized index (e.g., 135 instead of 2135 bits)

If one uses a secret key as index, then one has something like
a random function without its disadvantages
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Pseudorandom functions

Definition 2.8 (PRF)

A family F : K × X → Y of (efficiently computable) functions,
where each k ∈ K determines a function fk : X → Y that is
indistinguishable from a random function (i.e., a function randomly
chosen from Funcs[X ,Y ])

Similar to a PRF, a pseudorandom permutation (PRP) is a
family P : K × X → X of permutations, where each k ∈ K
determines a permutation pk : X → X that is indistinguishable
from a random permutation (i.e., a permutation randomly chosen
from Perms[X ])
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Pseudorandom functions

PRFs and PRPs are important in modern cryptography

Many cryptographic constructions can be seen in this light

A cryptographic hash function is a PRF (with no key)
A key derivation function (KDF) is a PRF with a seed acting
as a key
A block cipher is a PRP
A PRG can be built from a PRF and vice versa
. . .

PRFs and PRPs are further addressed in Chapter 8
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Symmetric encryption

Let M be a plaintext message space, C a ciphertext space, and K
a key space

Definition 2.9 (Symmetric encryption system or cipher)

A pair (E ,D) of families of efficiently computable functions:

E : K ×M→ C denotes a family {Ek : k ∈ K} of encryption
functions Ek :M→ C
D : K × C →M denotes a family {Dk : k ∈ K} of respective
decryption functions Dk : C →M

For every message m ∈M and key k ∈ K, Dk and Ek must be
inverse to each other, i.e., Dk(Ek(m)) = m
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Symmetric encryption

While the decryption functions need to be deterministic, the
encryption functions can be deterministic or probabilistic

Probabilistic encryption usually has a security advantage

In a typical setting, M = C = {0, 1}∗ refers to the set of all
arbitrarily long binary strings, whereas K = {0, 1}l refers to
the set of all l bits long keys

In this notation, l stands for the key length of the symmetric
encryption system (typically l ≥ 128)
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Symmetric encryption
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Symmetric encryption

The characteristic feature of a symmetric encryption system is
that k is the same on either side of the communication
channel

Another characteristic feature is that the system can operate
on individual bits and bytes (→ stream ciphers) or on larger
blocks (→ block ciphers)

While there are modes of operation that turn a block cipher
into a stream cipher, the opposite is not known to be true,
i.e., there is no mode of operation that turns a stream cipher
into a block cipher
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Symmetric encryption

To make meaningful security statements, one must define the
adversary (1) and the task he or she needs to solve (2)

With regard to (1), one must specify his or her computing
power and the types of attacks he or she is able to mount

Ciphertext-only attack
Chosen-plaintext attack (CPA)
Chosen-ciphertext attack (CCA)
. . .

With regard to (2), one must specify whether he or she must
decrypt a ciphertext, determine a key, determine a few bits
from either the plaintext or the key, or do something else

Consequently, there are several notions of security
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Symmetric encryption

If the adversary has infinite computing power but is still not
able to solve the task within a finite amount of time, then the
cipher is unconditionally or information-theoretically
secure (e.g., one-time pad)

If the adversary is theoretically able to solve the task within a
finite amount of time, but the computing power required to
do so is beyond his or her capabilities, then the cipher is
“only” conditionally or computationally secure

This means that the system can be broken in theory (e.g., by
an exhaustive key search), but the respective attack is
believed to be computationally infeasible
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Symmetric encryption

If a cipher is semantically secure, then it is computationally
infeasible to retrieve any meaningful information about a
plaintext message from a given ciphertext, even if the
adversary can mount a CPA

All symmetric encryption systems in use today are (at least)
semantically secure

Symmetric encryption and the various notions of security
(e.g., semantic security) are further addressed in Chapter 9
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Message authentication

While encryption systems are to protect the confidentiality of
data (e.g., messages), there are applications that require the
authenticity and integrity of data to be protected

The typical way to achieve this is to have the sender add an
authentication tag to the message and have the recipient
verify the tag

This is conceptually similar to an error correction code

But in addition to protecting a message against transmission
errors, such an authentication tag must also be protected
against tampering and deliberate fraud
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Message authentication

From a bird’s eye perspective, there are two possibilities to
construct an authentication tag

Public key cryptography and digital signatures
Secret key cryptography and message authentication codes
(MACs)

Definition 2.10 (MAC)

An authentication tag that can be computed and verified with a
secret parameter (key)
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Message authentication

Definition 2.11 (Message authentication system)

A pair (A,V ) of families of efficiently computable functions:

A : K ×M→ T denotes a family {Ak : k ∈ K} of
authentication functions Ak :M→ T
V : K ×M× T → {valid , invalid} denotes a family
{Vk : k ∈ K} of verification functions
Vk :M×T → {valid , invalid}

For every message m ∈M and key k ∈ K, Vk(m, t) must yield
valid iff t is a valid authentication tag for m and k, i.e., t = Ak(m)
and hence Vk(m,Ak(m)) must yield valid
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Message authentication
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Message authentication

To argue about the security of a message authentication
system, one must define the adversary and the task he or she
must solve

Similar to symmetric encryption systems, one may consider
adversaries with infinite computing power to come up with
systems that are unconditionally or information-
theoretically secure, or — more realistically — adversaries
with finite computing power to come up with systems that are
“only” conditionally or computationally secure

Message authentication, MACs, and respective message
authentication systems are further addressed in Chapter 10
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Authenticated encryption

In the past, people used symmetric encryption systems to
encrypt messages and message authentication systems to
generate MACs that were then appended to the messages

But it was not clear how (i.e., in what order), the two
cryptographic primitives had to be applied and combined to
achieve the best level of security

Generic composition methods

Encrypt-then-MAC (EtM): Eke (m) ‖ Aka(Eke (m)) → IPsec
Encrypt-and-MAC (E&M): Eke (m) ‖ Aka(m) → SSH
MAC-then-Encrypt (MtE): Eke (m ‖ Aka(m)) → SSL/TLS
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2. Cryptographic Systems
2.2 Secret Key Cryptosystems – Authenticated encryption

Since the early 2000s, it is known that the composition EtM
method provides the best level of security

Most security protocols follow this approach

More specifically, they combine message encryption and
authentication in authenticated encryption (AE) or even
authenticated encryption with associated data (AEAD)

AE(AD) and respective modes of operation for block ciphers
are further addressed in Chapter 11
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2. Cryptographic Systems
2.3 Public Key Cryptosystems

Key establishment

Asymmetric encryption

Digital signatures

In a hybrid cryptosystem, public key cryptography is used for
authentication and key establishment, whereas secret key
cryptography is used for everything else (e.g., bulk data encryption)
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Key establishment

If two or more entities want to employ secret key
cryptography, then they must share a secret parameter that
represents a key

Consequently, in a large system many keys must be generated,
stored, managed, used, and destroyed in a secure way

If n entities want to securely communicate with each other,
then there are(

n
2

)
=

n(n − 1)

1 · 2
=

n2 − n

2

such keys (≈ n2-problem)
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Key establishment

In a dynamic system, entities may join and leave at will

The predistribution of all keys is impossible, because it is not
even known in advance who may want to join

This means that one has to be able to establish keys on the
fly (whenever needed)

Key distribution center (KDC), e.g., Kerberos
Key establishment (→ Chapter 12)

Key distribution
Key agreement or exchange, e.g., Diffie-Hellman key exchange
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Asymmetric encryption

Similar to a symmetric encryption system, an asymmetric
encryption system can be used to encrypt and decrypt
plaintext messages

An asymmetric encryption system can be built from a
trapdoor function (or a family of trapdoor functions)

Each public key pair comprises a public key pk that yields a
one-way function and a private key sk that yields a respective
trapdoor
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Asymmetric encryption

Definition 2.12 (Asymmetric encryption system)

A triple of three efficient algorithms:

Generate(1k) generates a public key pair (pk, sk)

Encrypt(pk ,m) generates a ciphertext c = Encrypt(pk,m)

Decrypt(sk , c) generates a plaintext message
m = Decrypt(sk , c)

For every plaintext message m and public key pair (pk, sk), the
Encrypt and Decrypt algorithms must be inverse to each other,
i.e., Decrypt(sk,Encrypt(pk, m)) = m
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Asymmetric encryption
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Asymmetric encryption

There are many asymmetric encryption systems, such as
Elgamal, RSA, and Rabin

These systems are based on the three exemplary one-way
functions mentioned above

Because it is computationally infeasible to invert these
functions, the systems provide a reasonable level of security —
even in their basic forms (aka textbook versions)

Asymmetric encryption and respective notions of security are
further addressed in Chapter 13
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures

According to RFC 4949, a digital signature refers to “a value
computed with a cryptographic algorithm and appended to a
data object in such a way that any recipient of the data can
use the signature to verify the data’s origin and integrity”

Similarly, the term is defined as “data appended to, or a
cryptographic transformation of, a data unit that allows a
recipient of the data unit to prove the source and integrity of
the data unit and protect against forgery, e.g. by the
recipient” in ISO/IEC 7498-2
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures

According to ISO/IEC 7498-2, there are two classes of digital
signatures and respective digital signature systems (DSS)

Digital signatures with appendix
Digital signatures giving message recovery

The entity that digitally signs a data unit or message is called
the signer or signatory, whereas the entity that verifies the
digital signature is called the verifier

In a typical setting, both the signer and the verifier are
computing devices that are operated on a user’s behalf
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures

Definition 2.13 (DSS with appendix)

A triple of three efficiently computable algorithms:

Generate(1k) generates a public key pair (pk, sk)

Sign(sk,m) generates a digital signature s for m

Verify(pk,m, s) generates a binary decision whether the
signature is valid

Verify(pk,m, s) must yield valid iff s is a valid digital signature for
m and pk, i.e., for every message m and every public key pair
(pk, sk), Verify(pk,m, Sign(sk,m)) must yield valid
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures

Definition 2.14 (DSS giving message recovery)

A triples of three efficiently computable algorithms:

Generate(1k) generates a public key pair (pk, sk)

Sign(sk,m) generates as output a digital signature s

Recover(pk, s) generates either the message m or a
notification indicating that the signature is invalid

Recover(pk , s) must yield m if and only if s is a valid digital
signature for m and pk, i.e., for every message m and every public
key pair (pk, sk), Recover(pk, Sign(sk,m)) must yield m
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures

With the proliferation of the Internet in general and
Internet-based e-commerce in particular, digital signatures and
their legislation have become important and very timely topics

Many DSS with specific properties have been developed,
proposed, and published in the past

Again, the most important examples are RSA, Rabin, Elgamal,
and some variants of Elgamal, such as the Digital Signature
Algorithm (DSA) and the elliptic curve DSA (ECDSA)
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2. Cryptographic Systems
2.3 Public Key Cryptosystems – Digital signatures

Similar to asymmetric encryption systems, the security
discussion for digital signatures is nontrivial and subtle

There are several notions of security

In the strongest case, a DSS can withstand existential forgery,
even if the adversary can mount adaptive chosen-message
attacks

Digital signatures and respective notions of security are
further addressed in Chapter 14
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2. Cryptographic Systems
2.4 Final Remarks

There are unkeyed, secret key, and public key cryptosystems

This classification scheme is somewhat arbitrary, and other
classification schemes may be used instead

A major theme in cryptography is to better understand and
formally define the notions of security, and to prove that
particular cryptosystems are in line with these definitions
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2. Cryptographic Systems
2.4 Final Remarks

Another major theme is how to compose or combine secure
cryptographic building blocks in a modular fashion

Universal composability
Constructive cryptography
. . .

Last but not least, there are several models and
recommendations regarding keylengths that are appropriate
(→ https://www.keylength.com)
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Questions and Answers
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Thank you for your attention
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