Cryptography 101: From Theory to Practice

Chapter 4 – Random Functions

Rolf Oppliger

February 7, 2022

Terms of Use

- This work is published with a CC BY-ND 4.0 license (⊚④⑤)
 - CC = Creative Commons (ⓒ)
 - BY = Attribution ()
 - ND = No Derivatives (⑤)

whoami

rolf-oppliger.ch
rolf-oppliger.com

- Swiss National Cyber Security Centre NCSC (scientific employee)
- eSECURITY Technologies Rolf Oppliger (founder and owner)
- University of Zurich (adjunct professor)
- Artech House (author and series editor for information security and privacy)

Reference Book

© Artech House, 2021 ISBN 978-1-63081-846-3

https://books.esecurity.ch/crypto101.html

Challenge Me

Outline

4. Random Functions

- 1 Introduction
- 2 Cryptographic Systems
- 3 Random Generators
- 5 One-Way Functions
- 6 Cryptographic Hash Functions
- Pseudorandom Generators
- Pseudorandom Functions
- Symmetric Encryption
- 0 Message Authentication
- 11 Authenticated Encryption
- 12 Key Establishment
- 13 Asymmetric Encryption
- 14 Digital Signatures
- 15 Zero-Knowledge Proofs of Knowledge
- 16 Key Management
- 17 Summary
- 18 Outlook

- 4.1 Introduction
- 4.2 Implementation
- 4.3 Final Remarks

4.1 Introduction

- A random generator outputs values that look random (i.e., it is characterized by its output)
- If one talks about random functions (or random oracles), then the focus is not the output of the function, but rather the way it is chosen
- According to Definition 2.2, a random function $f: X \to Y$ is chosen randomly from $Functorial{uncons}[X, Y]$
- There are $|Y|^{|X|}$ such functions, i.e., $|\text{Funcs}[X, Y]| = |Y|^{|X|}$

4.1 Introduction

- If X = Y and one only considers permutations of X, i.e., Perms[X], then a random permutation is chosen randomly from Perms[X]
- There are |X|! such permutations, i.e., |Perms[X]| = |X|!
- Random functions and random permutations are purely theoretical constructs that are not meant to be implemented in practice

4.2 Implementation

- According to the way it is defined, a random function can output any value $y = f(x) \in f(X) \subseteq Y$ for $x \in X$
- The only requirement is that the same input value *x* must always map to the same output value *y*
- Except for that, everything is possible and does not really matter (for the function to be random)
- A random function can, for example, map all input values to the same output value

4.2 Implementation

- A random function is best thought of as a black box that has a particular input-output behavior
- This behavior can be observed by everybody

4.2 Implementation

- Another way to think about a random function f is as a large random table T with entries T[x] = (x, f(x)) for all $x \in X$
- The table can either be statically determined or dynamically generated (i.e., on the fly)
- In either case, implementing a random function is trivial
- However, one should not get too excited about this fact, because a random function doesn't serve any useful purpose (i.e., one cannot solve any real-world problem with a random function)

4.3 Final Remarks

- The sole purpose of this chapter is to introduce the notions of a random function and a random permutation
- Many cryptographic primitives and cryptosystems can be seen in this light
- They are not truly random but show a similar behavior and are thus indistinguishable from them
- To emphasize this subtle difference, such functions and permutations are called "pseudorandom"
- PRFs and PRPs are further addressed in Chapter 8

Questions and Answers

Thank you for your attention

