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5. One-Way Functions
5.1 Introduction

According to Definition 2.3, a function f : X → Y is one way,
if f (x) can be computed efficiently for all x ∈ X , but
f −1(f (x)) cannot be computed efficiently for all x ∈ X , i.e.,
f −1(y) cannot be computed efficiently for y ∈R Y

In a complexity-theoretic setting, an “efficient computation”
stands for a computation that runs in polynomial time

A probabilistic algorithm that runs in polynomial time is called
probabilistic polynomial-time (PPT)
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5. One-Way Functions
5.1 Introduction

Definition 5.1 (One-way function)

A function f : X → Y for which the following two conditions are
fulfilled:

The function f is easy to compute, meaning that it is known
how to efficiently compute f (x) for all x ∈ X (i.e., there is a
PPT algorithm A that outputs A(x) = f (x) for all x ∈ X )

The function f is hard to invert, meaning that it is not known
how to efficiently compute f −1(f (x)) for x ∈R X (i.e., there is
no known PPT algorithm A that can output
A(f (x)) = f −1(f (x)) for x ∈R X )
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5. One-Way Functions
5.1 Introduction

Another way to express the second condition is to say that
any PPT algorithm A that tries to invert f only succeeds with
a probability that is negligible (i.e., bound by a polynomial
fraction)

This means that there is a positive integer n0 ∈ N, such that
for every PPT algorithm A, every x ∈ X , every polynomial
p(·), and all n0 ≤ n ∈ N the following relation holds:

Pr[A(f (x), 1b) ∈ f −1(f (x))] ≤ 1

p(n)
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5. One-Way Functions
5.1 Introduction

The following (equivalent) notation is also used in the
literature:

Pr[(f (z) = y : x
r← {0, 1}b; y ← f (x); z ← A(y , 1b)] ≤ 1

p(n)

If x is sampled uniformly at random from {0, 1}b, y is
assigned f (x), and z is assigned A(y , 1b), then the probability
that f (z) equals y = f (x) is negligible
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5. One-Way Functions
5.1 Introduction

According to Definition 2.4, a one-way function f : X → Y is
a trapdoor (one-way) function, if there is some extra
information with which f can be inverted efficiently

Definition 5.2 (Trapdoor function)

A one-way function f : X → Y for which there is a trapdoor
information t and a PPT algorithm I that can be used to
efficiently compute x ′ = I (f (x), t) with f (x ′) = f (x)
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5. One-Way Functions
5.1 Introduction

One-way permutations and trapdoor (one-way) permutations
are defined similarly

Instead of talking about one-way functions, trapdoor
functions, one-way permutations, and trapdoor permutations,
one often refers to such families

This is because many cryptographic functions required to be
one way output bit strings of fixed length, and hence finding a
preimage requires a huge but fixed number of tries (e.g., 2n)

In complexity theory, the computational complexity to invert
such a function is O(1) and hence trivial
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5. One-Way Functions
5.1 Introduction

If one wants to use complexity-theoretic arguments, then one
cannot have a constant n

Instead, one must make n variable, and it must be possible to
let n grow arbitrarily large

Consequently, one has to work with a potentially infinite
family of functions, and there must be at least one function
for every possible value of n

Alternative terms for families are “classes,” “collections,” or
“ensembles”

This mathematical precision is not always enforced
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5. One-Way Functions
5.1 Introduction

Definition 5.3 (Family of one-way functions)

A family of functions F = {fi : Xi → Yi}i∈I that fulfills the
following two conditions:

I is an infinite index set

For every i ∈ I there is a function fi : Xi → Yi that is one-way

The notion of a family similarly applies to trapdoor functions,
one-way permutations, and trapdoor permutations
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5. One-Way Functions
5.1 Introduction

The notion of a one-way function suggests that x cannot be
computed efficiently from f (x)

This does not exclude the case that some partial information
about x can be determined

Every one-way function f is known to have a hard-core
predicate, i.e., a predicate B : X → {0, 1} that can be
computed efficiently from x but not from f (x)

Hard-core predicates are heavily used, for example, in
cryptographically secure PRGs
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5. One-Way Functions
5.1 Introduction
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5. One-Way Functions
5.1 Introduction

Definition 5.4 (Hard-core predicate)

If f : X → Y is a one-way function, then a hard-core predicate of f
is a predicate B : X → {0, 1} that fulfills the following two
conditions:

B(x) can be computed efficiently for all x ∈ X , i.e., there is a
PPT algorithm A that can output B(x) for all x ∈ X

B(x) cannot be computed efficiently from y = f (x) ∈ Y for
x ∈R X , i.e., there is no known PPT algorithm A that can
output B(x) from y = f (x) for x ∈R X
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5. One-Way Functions
5.2 Candidate One-Way Functions

Mathematically speaking, there is no function known to be
one way (otherwise NP 6= P would also be true)

There are only a few functions conjectured to be one way

Most of these functions are centered around modular
exponentiation (for some properly chosen modulus m)

Discrete exponentiation function: f (x) = g x mod m
RSA function: f (x) = xe mod m
Modular square function: f (x) = x2 mod m
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

In R, the exponentiation function maps arbitrary elements
x ∈ R to y = exp(x) = ex ∈ R, whereas the logarithm
function does the opposite i.e., it maps x to ln(x)

This is true for base e, but it is also true for any other base
a ∈ R
Formally, the two functions can be expressed as follows:

Exp : R −→ R Log : R −→ R
x 7−→ ax x 7−→ loga x
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

In R, both the exponentiation function and the logarithm
function are continuous and can be computed efficiently, using
any form of approximation

But in a discrete algebraic structure, it is usually not possible
to use the notion of continuity and approximate a solution

In fact, there are cyclic groups in which the exponentiation
function (i.e., discrete exponentiation function) can be
computed efficiently, whereas the inverse function (i.e.,
discrete logarithm function) cannot be computed efficiently
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

If G is such a (multiplicatively written) group with generator
g , then one can express the discrete exponentiation and
logarithm functions as follows:

Exp : N −→ G Log : G −→ N
x 7−→ g x x 7−→ logg x

Depending on the nature of G , no efficient algorithm may be
known to compute Log

Examples are 〈Z∗p, ·〉, denoted Z∗p, or — more realistically — a
subgroup of Z∗p with q = (p − 1)/2 elements
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

Construction of such a family of one-way functions

Index set I := {(p, g) | p ∈ P; g generates G = Z∗p}
Ideally, I := {(p, g) | p ∈ P∗; g generates G ⊂ Z∗p with |G | =
q = (p − 1)/2} where P∗ refers to the set of all safe primes
Family of discrete exponentiation functions

Exp := {Exp : N −→ G , x 7−→ g x}(p,g)∈I

Family of discrete logarithm functions

Log := {Log : G −→ N, x 7−→ logg x}(p,g)∈I
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

If one wants to use Exp as a family of one-way functions, then
one has to be sure that discrete logarithms cannot be
computed efficiently in G

This is where the discrete logarithm assumption (DLA)
comes into play

It suggests that a PPT algorithm A to compute a discrete
logarithm can only succeed with a probability that is negligible

This is (one of the reasons) why p should be a safe prime
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

There are several problems phrased around the DLA and the
one-way property of the discrete exponential function

Discrete logarithm problem (DLP)
(Computational) Diffie-Hellman problem (DHP)
Decisional Diffie-Hellman problem (DDHP)

In the definitions, the problems are specified in abstract
notation using a cyclic group G and a generator g

The numerical examples are given in Z∗7 = {1, 2, 3, 4, 5, 6}
with generator g = 5 (note that g = 5 generates all elements
of Z∗7; i.e., 50 = 1, 51 = 5, 52 = 4, 53 = 6, 54 = 2, and 55 = 3)
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

Definition 5.5 (DLP)

If G is a cyclic group with generator g , then the DLP is to
determine x ∈ N for g x

In Z∗7 with g = 5, the DLP for g x = 4 yields x = 2, because
52 mod 7 = 4

The group is so small that all possible values of x can simply
be tried out (this doesn’t work in large groups)

The discrete (and cyclic) nature of G makes it impossible to
solve the DLP by approximation
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

Definition 5.6 (DHP)

If G is a cyclic group, g a generator of G , and x and y two
positive integers smaller than the order of G , i.e., 0 < x , y < |G |,
then the DHP is to determine g xy for g x and g y

In Z∗7 with g = 5, x = 3 and y = 6 yield g x = 53 mod 7 = 6
and g y = 56 mod 7 = 1

The DHP is to determine g xy = 518 mod 7 = 1 from g x = 6
and g y = 1

The DHP is at the core of the Diffie-Hellman key exchange
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

Definition 5.7 (DDHP)

If G is a cyclic group, g a generator of G , and x , y , and z three
positive integers smaller than the order of G , i.e.,
0 < x , y , z < |G |, then the DDHP is to decide whether g xy or g z

solves the DHP for g x and g y

In Z∗7 with g = 5, x = 3, y = 6, and z = 2 yield
g x = 53 mod 7 = 6, g y = 56 mod 7 = 1, and
g z = 52 mod 7 = 4

The DDHP is to determine whether g xy = 1 or g z = 4 solves
the DHP (see above)
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function
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5. One-Way Functions
5.2 Candidate One-Way Functions – Discrete Exponentiation Function

An interesting question is how the DLA-based problems, i.e.,
DLP, DHP, and DDHP, relate to each other

This question is answered by giving complexity-theoretic
reductions: DDHP ≤P DHP ≤P DLP

In many groups, the DLP and the DHP are computationally
equivalent

There are groups in which the DDHP can be solved in
polynomial time, whereas the fastest known algorithms to
solve the DHP still require subexponential time (e.g., gap
Diffie-Hellman groups)
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

The RSA function refers to f (x) = xe mod m, where m is a
composite integer — usually written as n

More specifically, n is the product of two distinct primes p and
q, i.e., n = pq, and e is relatively prime to φ(n) — where
φ(n) refers to Euler’s totient function

The RSA function can be defined as follows:

RSAn,e : Zn −→ Zn

x 7−→ xe

It operates on Zn and computes the e-th power of x ∈ Zn
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

RSAn,e yields a permutation on the elements of Zn, i.e.,
RSAn,e ∈ Perms[Zn]

To compute the inverse function (i.e., e-th roots), one must
know the multiplicative inverse element d of e modulo φ(n)

Using d , the inverse function of RSAn,e is defined as follows:

RSAn,d : Zn −→ Zn

x 7−→ xd

RSAn,e and RSAn,d can be computed efficiently
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

To compute RSAn,d , one must know either d , one prime
factor of n, i.e., p or q, or φ(n)

Any of these values yields a trapdoor

No polynomial-time algorithm is known to compute any of
these values from n and e

The quantum computer is a game changer (using Shor’s
algorithm)

But nobody has been able to build a sufficiently large
quantum computer yet (in terms of qubits)
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

Construction of a family of one-way functions

Index set I := {(n, e) | n = pq; p, q ∈ P; p 6= q; 1 < e <
φ(n); (e, φ(n)) = 1}
Family of RSA functions

RSA := {RSAn,e : Zn −→ Zn, x 7−→ xe}(n,e)∈I

The family comprises both RSAn,e and RSAn,d

Because every RSA function RSAn,e has trapdoors and yields
a permutation over Zn, RSA is a family of trapdoor
permutations
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

It is assumed that RSAn,e is hard to invert (for a sufficiently
large n and without knowing a trapdoor)

More specifically, the RSA assumption suggests that any
PPT algorithm can invert RSAn,e only with a success
probability that is negligible

There is even a stronger version of the RSA assumption
known as strong RSA assumption

It suggests that the success probability for a PPT algorithm
remains negligible even if it can select the value of e
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

An obvious way to invert RSAn,e is to determine a trapdoor,
e.g., by solving the integer factoring problem (IFP)

Definition 5.8 (IFP)

For n ∈ N, the IFP is to determine the distinct values
p1, . . . , pk ∈ P and e1, . . . , ek ∈ N such that n = pe11 · · · p

ek
k

The integer factoring assumption (IFA) suggests that the
IFP cannot be solved efficiently, meaning that any PPT
algorithm can solve the IFP only with a success probability
that is negligible
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

Under the RSA and IFA assumptions, the RSA problem
(RSAP) is computationally intractable

Definition 5.9 (RSAP)

If (n, e) is a public key with n = pq and c ≡ me (mod n) a
ciphertext, then the RSAP is to determine m, i.e., computing the
eth root of c modulo n (without trapdoor)

It is obvious that RSAP ≤P IFP

The converse, i.e., IFP ≤P RSAP, is not known to be true

RSAP and IFP are not computationally equivalent
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5. One-Way Functions
5.2 Candidate One-Way Functions – RSA function

According to the strong RSA assumption, the value of e may
be considered as an additional parameter

The respective problem is called the flexible RSAP: For given
n and c , find e and m such that c ≡ me (mod n)

Clearly, flexible RSAP ≤P RSAP

This can easily be shown by fixing an arbitrary value for e and
solving the respective RSAP

cbd Rolf Oppliger 38

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 5 – One-Way Functions

5. One-Way Functions
5.2 Candidate One-Way Functions – Modular square function

Starting with the “normal” RSA function in Zn, one may
replace e with the value 2 (that is invalid for the “normal”
RSA function)

This yields the modular square function:

Squaren : Zn −→ QRn

x 7−→ x2

2 is not relatively prime to φ(n), and hence Squaren is not
bijective and does not yield a permutation over Zn

The range of the modular square function is QRn
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5. One-Way Functions
5.2 Candidate One-Way Functions – Modular square function

QRn is a proper subgroup of Zn, i.e., QRn ⊂ Zn

There are values x1, x2, . . . in Zn that are mapped to the
same value x2 in QRn, and hence Squaren is not injective

This suggests that the inverse modular square root function

Sqrtn : QRn −→ Zn

x 7−→ x1/2

is not properly defined

To properly define it, one has to make sure that Squaren is
injectice (or bijective, respectively)
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5. One-Way Functions
5.2 Candidate One-Way Functions – Modular square function

This can be achieved by restricting the domain and codomain
to QRn (where n is usually a Blum integer)

In this case, Squaren is bijective and yields a permutation
over QRn, and hence Sqrtn always has a solution.

More specifically, every x ∈ QRn has four square roots modulo
n, of which one is again an element of QRn

This unique square root of x is called the principal square
root of x modulo n
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5. One-Way Functions
5.2 Candidate One-Way Functions – Modular square function

Construction of a family of one-way permutations

I := {n | n = pq; p, q ∈ P; p 6= q; |p| = |q|; p, q ≡ 3 (mod 4)}
Family of modular square functions

Square := {Squaren : QRn −→ QRn, x 7−→ x2}n∈I

Family of inverse functions

Sqrt := {Sqrtn : QRn −→ QRn, x 7−→ x1/2}n∈I
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5. One-Way Functions
5.2 Candidate One-Way Functions – Modular square function

In the case of the “normal” RSA function, the problems of
computing e-th roots in Zn and factoring n are not known to
be computationally equivalent

In contrast, modular squares can always be computed
efficiently, whereas modular square roots (if they exist) can be
computed efficiently iff the prime factorization of n is known

This suggests that the problems of computing square roots in
QRn and factoring n are computationally equivalent
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5. One-Way Functions
5.3 Integer Factorization Algorithms

The IFP has attracted many mathematicians in the past

There are several integer factorization algorithms to choose
from

Some of these algorithms are special-purpose, whereas
others are general-purpose

In practice, algorithms of both categories are routinely
combined and used one after another
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5. One-Way Functions
5.3 Integer Factorization Algorithms – Special-Purpose Algorithms

Trial division

P − 1 algorithm (John M. Pollard, 1970s)

P + 1 algorithm (Hugh C. Williams, 1980s)

Elliptic curve method (Hendrik W. Lenstra, late 1980s)

Pollard Rho (John M. Pollard, 1975)
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5. One-Way Functions
5.3 Integer Factorization Algorithms – General-Purpose Algorithms

General-purpose integer factorization algorithms work equally
well for all n

Most of these algorithms exploit an idea of Fermat

It starts from the fact that every odd integer n ≥ 3 can be
written as the difference of two squares, i.e., n = x2 − y2, for
x , y ∈ N (where y may also be zero)

According to the third binomial formula, x2 − y2 is equal to
(x + y)(x − y), and this suggests that p = (x + y) and
q = (x − y) are factors of n (if n is prime, then the factors are
trivial, i.e., n and 1)
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5. One-Way Functions
5.3 Integer Factorization Algorithms – General-Purpose Algorithms

For example, to factorize n = 91 one has to find two integers
for which the difference of the squares is equal to this value

In this example, x = 102 = 100 and y = 32 = 9 satisfy this
property, and hence p = 10 + 3 = 13 and q = 10− 3 = 7
yield the two (prime) factors of 91 (i.e., 13 · 7 = 91)

Fermat also proposed a method to find a valid (x , y)-pair

But the method is efficient only if x and y are similarly sized
and not too far away from

√
n

Otherwise, the method is not efficient and largely impractical
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5. One-Way Functions
5.3 Integer Factorization Algorithms – General-Purpose Algorithms

There are several algorithms that can be used to find such
(x , y)-pairs (instead of Fermat’s method)

Continued fraction
Sieving methods

Quadratic sieve (QS)
Number field sieve (NFS)
Special number field sieve (SNFS)
General number field sieve (GNFS)

The NFS algorithm (and its variants) consists of two steps, of
which one can be parallelized and optimized with special
hardware (e.g., TWINKLE, SHARK, YASD, . . . )
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5. One-Way Functions
5.3 Integer Factorization Algorithms

A USD 100 factorization challenge (RSA-129) was posted in
the August 1977 issue of the Scientific American

In 1994, it was solved with a distributed version of the QS

RSA-129 = 1143816257578888676692357799761466120102182967212

4236256256184293570693524573389783059712356395870

5058989075147599290026879543541

= 3490529510847650949147849619903898133417764638493

387843990820577

∗
3276913299326670954996198819083446141317764296799

2942539798288533
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5. One-Way Functions
5.3 Integer Factorization Algorithms

RSA Factoring Challenge (officially running until 2007)

RSA-576 (2003, USD 10,000)
RSA-640 (2005, USD 20,000)
RSA-704 (2012)
RSA-768 (2009)
RSA-240 (795-bit number, December 2019)
RSA-250 (829-bit number, February 2020)
. . .

The bottom line is that the current state of the art in
factorizing large integers is still below 1,024 bits

Longer keys (≥ 2,048 bits) are recommended
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5. One-Way Functions
5.4 Algorithms for Computing Discrete Logarithms

Several public key cryptosystems are based on the
computational intractability of the DLP in a cyclic group

If somebody were able to solve the DLP and efficiently
compute discrete logarithms, then he or she would be able to
break these systems

It is therefore important to know the most efficient algorithms
that can be used to compute discrete logarithms

Again, there are generic and nongeneric (special-purpose)
algorithms
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5. One-Way Functions
5.4 Algorithms for Computing Discrete Logarithms

There are a few generic algorithms that can be used to solve
the DLP in a cyclic group G

O(
√
|G |) is a lower bound for the time complexity of such an

algorithm

Improvements are only possible if the prime factorization of
|G | is known

In this case (and if the prime factors of |G | are sufficiently
small), the Pohlig-Hellman algorithm can be used to
efficiently solve the DLP
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5. One-Way Functions
5.4 Algorithms for Computing Discrete Logarithms

Generic algorithms

Brute-Force Search
Baby-Step Giant-Step Algorithm (Daniel Shanks, 1971)
Pollard Rho (John M. Pollard, 1978)

Nongeneric (special-purpose) algorithms

Index calculus method (ICM) for Z∗p and some other groups
NFS
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

Public key cryptosystems get their security from the assumed
intractability of inverting a one-way function

This is not equally difficult in all algebraic structures

For example, there are nongeneric (special-purpose)
algorithms with subexponential running times (e.g., ICM,
NFS, . . . ) to invert the discrete exponentiation function (and
solve the DLP) in Z∗p
These algorithms do not work in all groups
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

This is where elliptic curve cryptography (ECC) comes into
play

In a group of points on an elliptic curve over a finite field no
nongeneric (special-purpose) algorithm to solve the DLP
(ECDLP) is known to exist

This does not mean that such an algorithm does not exist (it
is just not known)

The bottom line is that one can work with shorter keys (and
still achieve the same level of security)
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

ECC employs groups of points on an elliptic curve over a finite
field Fq, where q is an odd prime (prime field) or some power
of a prime (extension field)

In the second case, the prime 2 is most frequently used (i.e.,
binary extension field of characteristic 2)

If q = 2m for some m ∈ N, then m is the degree of the (binary
extension) field

Prime fields are mainly used in software implementations,
whereas binary extension fields are mainly used in hardware
implementations
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

If p is an odd prime, then the Weierstrass equation

y2 ≡ x3 + ax + b (mod p)

with a, b ∈ Zp and 4a3 + 27b2 6≡ 0 (mod p) yields an elliptic
curve over Zp:

E (Zp) = {(x , y) | x , y ∈ Zp ∧
y2 ≡ x3 + ax + b (mod p) ∧
4a3 + 27b2 6≡ 0 (mod p)}
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

E (Zp) comprises all (x , y) ∈ Zp × Zp = Z2
p that solve to the

Weierstrass equation

One can graphically interpret (x , y) as a point in the
(x , y)-plane

In addition to the points on the curve, one also considers a
point at infinity, denoted O
This point yields the identity element required for the group
operation

If one uses E (Zp) to refer to an elliptic curve defined over Zp,
then it implicitly also includes O

cbd Rolf Oppliger 58

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 5 – One-Way Functions

5. One-Way Functions
5.5 Elliptic Curve Cryptography

For p = 23 and a = b = 1 [4 · 13 + 27 · 12 6≡ 0 (mod 23)], the
elliptic curve y2 ≡ x3 + x + 1 is defined over Z23

Besides O, E (Z23) comprises the following 27 elements:

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12) (9, 7)

(9, 16) (11, 3) (11, 20) (12, 4) (12, 19) (13, 7) (13, 16)
(17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18)

This sums up to 28 elements of E (Z23)

Animation to visualize the group elements
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

If n is the number of points on an elliptic curve over a finite
field Fq, then n is of the order of q

A theorem due to Helmut Hasse bounds n as

q + 1− 2
√
q ≤ n ≤ q + 1 + 2

√
q

In the previous example, the Hasse theorem suggests that
E (Z23) has between 23 + 1− 2

√
23 = 14.4 . . . and

23 + 1 + 2
√

23 = 35.5 . . . elements (28 is in this range)
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

In addition to a set of elements, a group must also have an
associative operation

In ECC, this operation is called addition (mainly for historical
reasons), meaning that two points on an elliptic curve are
added

The addition operation can be explained geometrically or
algebraically

The geometric explanation is particularly useful for the
addition of two points on an elliptic curve over R
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

If P = (x1, y1) and Q = (x2, y2) are two distinct points on
E (R), then R = P + Q = (x3, y3) is constructed as follows:

Draw a line through P and Q
This line intersects E (R) in a third point
R is the reflection of this point on the x-axis.

If P = (x1, y1), then R = 2P = (x3, y3) is constructed as
follows:

Draw the tangent line to E (R) at P
This line intersects E (R) in a second point
R is the reflection of this point on the x-axis
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5. One-Way Functions
5.5 Elliptic Curve Cryptography
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

The fact that O is the neutral element of the point addition
means that P +O = O + P = P for all P ∈ E (Zq)

If P = (x , y) ∈ E (Zq), then −P = (x ,−y)

This yields another point on the elliptic curve (due to the
symmetry of the curve related to the x-axis)

In E (Z23), P = (3, 10) has the inverse −P = (3, 13) —
because −10 = −10 + 23 = 13 in Z23

P and −P sum up to O, i.e., P + (−P) = O
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

If P = (x1, y1) ∈ E (Zq) and Q = (x2, y2) ∈ E (Zq), then
P + Q = (x3, y3) can be computed as follows:

λ =

{
y2−y1
x2−x1 if P 6= Q
3x21+a
2y1

if P = Q

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

For P = (3, 10) and Q = (9, 7)
λ = 7−10

9−3 = −3
6 = 20 · 4 = 80 ≡ 11 (mod 23)

x3 = 112 − 3− 9 = 121− 3− 9 = 109 ≡ 17 (mod 23)
y3 = 11(3− 17)− 10 = 33− 187− 10 = −164 ≡ 20 ( mod 23)

Consequently, (3, 10) + (9, 7) = (17, 20)

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12) (9, 7)

(9, 16) (11, 3) (11, 20) (12, 4) (12, 19) (13, 7) (13, 16)
(17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18)

EC Calculator
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

If one adds P = (3, 10) to itself, then P + P = 2P = (x3, y3)
is computed as follows:

λ =
3(32) + 1

20
=

5

20
=

1

4
= 4−1 ≡ 6 (mod 23)

x3 = 62 − 6 = 30 ≡ 7 (mod 23)

y3 = 6(3− 7)− 10 = 18− 42− 10 = −34 ≡ 12 (mod 23)

Consequently, 2P = (7, 12)

This can be iterated to compute multiples of P
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

3P = (19, 5), 4P = (17, 3), 5P = (9, 16), 6P = (12, 4),
7P = (11, 3), 8P = (13, 16), 9P = (0, 1), 10P = (6, 4),
11P = (18, 20), 12P = (5, 4), 13P = (1, 7), 14P = (4, 0),
15P = (1, 16), 16P = (5, 19), 17P = (18, 3), 18P = (6, 19),
19P = (0, 22), 20P = (13, 7), 21P = (11, 20),
22P = (12, 19), 23P = (9, 7), 24P = (17, 20),
25P = (19, 18), 26P = (7, 11), 27P = (3, 13), and 28P = O
After having reached nP = O, a full cycle is finished and
everything starts from scratch, i.e., 29P = P = (3, 10),
30P = 2P = (7, 12), . . .
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

In this example, the order of the group n is 28

According to Lagrange’s theorem, the order of any element
divides n

For example, the point 7P = (11, 3) has order 4 (that divides
28), because 4 · 7P = 28P = O (and 4P = (17, 3) has order
7, because 7 · 4P = 28P = O)

In ECC, all standard curves are chosen so that n is prime (so
every element has order n and may serve as a generator)

This is different from other cyclic groups, where a generator
must first be found
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

For every E (Fq), the group of points on that curve (together
with O) and the addition operation form a cyclic group

ECC uses such a group and takes its security from the
assumed intractability of the elliptic curve discrete
logarithm problem (ECDLP)

Definition 5.10 (ECDLP)

If E (Fq) is an elliptic curve over Fq, P a point on E (Fq) of order
n, and Q another point on E (Fq), then it is to determine an
x ∈ Zn such that Q = P + . . .+ P︸ ︷︷ ︸

x times

= xP
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

There are no subexponential algorithms known to solve the
ECDLP

Again, this has the advantage (for the cryptographer) that the
resulting elliptic curve cryptosystems are equally secure with
smaller key sizes

For example, to reach the security level of 2,048 (3,072) bits
in a conventional public key cryptosystem like RSA, it is
estimated that 224 (256) bits are sufficient in ECC

Key length estimations

This is the order of magnitude people work with today
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

Based on the intractability assumption of the ECDLP, Neal
Koblitz and Victor Miller independently proposed elliptic curve
cryptosystems in the mid-1980s

Such cryptosystems are best viewed as elliptic curve versions
of DLP-based cryptosystems, in which the cyclic group (e.g.,
Z∗p or a subgroup) is replaced by a group of points on an
elliptic curve over a finite field

Consequently, there are ECC variants of Diffie-Hellman,
Elgamal, DSA, . . .

IFP-based cryptosystems have no useful ECC variants
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

A distinguishing feature of ECC is that every user may select a
different elliptic curve E (Fq)

This is true even if the same finite field Fq is used

This flexibility has advantages and disadvantages

For example, it may make interoperability difficult and raise
concerns about backdoors (e.g., Dual EC DRBG)

Anyway, implementing an elliptic curve cryptosystem is
involved, and one has to be cautious about patent claims
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5. One-Way Functions
5.5 Elliptic Curve Cryptography

May standardization bodies are active in ECC

Most importantly, the elliptic curve digital signature
algorithm (ECDSA) is the elliptic curve variant of the DSA
proposed in 1992

It is standardized in NIST FIPS 186, ISO/IEC 14888-3 (and
ISO/IEC 15946-1), ANSI X9.62, and IEEE Std 1363-2000

P-256 from FIPS 186-4 is an elliptic curve that is particularly
widely used in the field

cbd Rolf Oppliger 74

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 5 – One-Way Functions

5. One-Way Functions
5.5 Elliptic Curve Cryptography

Mainly due to the Dual EC DRBG incident, people are
worried about elliptic curves recommended by U.S. agencies

This also applies to the curves promoted by the Standards for
Efficient Cryptography Group (SECG) that are in line with
NIST (e.g., secp256k1 as used in Bitcoin)

Alternative curves

Brainpool curves (e.g., RFC 5639)
SafeCurves

Curve25519 (Ed25519 for signatures)
Curve448-Goldilocks (Ed448-Goldilocks for signatures)
E-521
. . .
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5. One-Way Functions
5.6 Final Remarks

Most public key cryptosystems in use today are based on one
(or several) one-way function(s)

This is also true for ECC that operates in groups in which
known special-purpose algorithms to compute discrete
logarithms do not work

It is sometimes recommended to use cryptosystems that
combine different types of one-way functions

This strategy becomes useless if all functions simultaneously
turn out not to be one-way or a hardware device can be built
that allows an adversary to efficiently invert them (e.g., a
quantum computer)
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Questions and Answers
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Thank you for your attention
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