
Chapter 6 – Cryptographic Hash Functions

Cryptography 101: From Theory to Practice

Chapter 6 – Cryptographic Hash Functions

Rolf Oppliger

March 1, 2022

cbd Rolf Oppliger 1

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

Terms of Use

This work is published with a CC BY-ND 4.0 license (cbd)

CC = Creative Commons (c)
BY = Attribution (b)
ND = No Derivatives (d)

cbd Rolf Oppliger 2

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

whoami

rolf-oppliger.ch

rolf-oppliger.com

Swiss National Cyber Security Centre
NCSC (scientific employee)

eSECURITY Technologies Rolf Oppliger
(founder and owner)

University of Zurich (adjunct professor)

Artech House (author and series editor for
information security and privacy)

cbd Rolf Oppliger 3

Cryptography 101: From Theory to Practice

https://rolf.esecurity.ch
https://rolf.esecurity.ch
https://www.ncsc.admin.ch
https://www.ncsc.admin.ch
https://company.esecurity.ch
https://www.ifi.uzh.ch/en/department/people/affiliated.html
https://us.artechhouse.com
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

Reference Book

https://books.esecurity.ch/crypto101.html

c© Artech House, 2021
ISBN 978-1-63081-846-3

cbd Rolf Oppliger 4

Cryptography 101: From Theory to Practice

https://books.esecurity.ch/crypto101.html
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

Challenge Me

cbd Rolf Oppliger 5

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

Outline

6. Cryptographic Hash
Functions

1 Introduction

2 Cryptographic Systems

3 Random Generators

4 Random Functions

5 One-Way Functions

7 Pseudorandom Generators

8 Pseudorandom Functions

9 Symmetric Encryption

10 Message Authentication

11 Authenticated Encryption

12 Key Establishment

13 Asymmetric Encryption

14 Digital Signatures

15 Zero-Knowledge Proofs of Knowledge

16 Key Management

17 Summary

18 Outlook

cbd Rolf Oppliger 6

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions

6.1 Introduction

6.2 Merkle-Damg̊ard Construction

6.3 Historical Perspective

6.4 Exemplary Hash Functions

6.5 Final Remarks

cbd Rolf Oppliger 7

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.1 Introduction

According to Definition 2.5, a hash function is an efficiently
computable function h : Σ∗in → Σn

out that maps x ∈ Σ∗in to
y ∈ Σn

out (for a fixed output length n)

Additional properties

H is one-way (preimage resistant) if it is computationally
infeasible to find x ∈ Σ∗in with h(x) = y for y ∈R Σn

out

H is second-preimage resistant (weak collision resistant) if
it is computationally infeasible to find x ′ ∈ Σ∗in with x ′ 6= x
and h(x ′) = h(x) for x ∈R Σ∗in
H is collision-resistant (strong collision resistant) if it is
computationally infeasible to find x , x ′ ∈ Σ∗in with x ′ 6= x and
h(x ′) = h(x)

cbd Rolf Oppliger 8

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.1 Introduction

According to Definition 2.6, a hash function h is
cryptographic if it is one-way and either second-preimage
resistant or collision-resistant

Remarks (1)

Due to the pigeonhole principle, the term “collision free” is
wrong and should not be used here
If one wants to use complexity-theoretic arguments, then one
must consider families of (cryptographic) hash functions
Collision resistance implies second-preimage resistance, but not
vice versa (this is why the terms “weak collision resistant” and
“strong collision resistant” are used in the first place)

cbd Rolf Oppliger 9

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.1 Introduction

Remarks (2)

Preimage resistance (one-wayness) and collision resistance are
inherently different properties
On the one hand, a preimage resistant function need not be
(strong or weak) collision-resistant

If g is an n-bit preimage resistant hash function, then the
function h(x) = g(x |n) is still preimage resistant but not
collision-resistant
All x ‖ y (with |x | ≥ n and y arbitrary) hash to the same
value and yield collisions

cbd Rolf Oppliger 10

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.1 Introduction

Remarks (3)
On the other hand, a (strong or weak) collision-resistant hash
function need not be preimage resistant (e.g., Maurer’s
counterexample)

If g is an n-bit collision-resistant hash function, then the
(n + 1)-bit hash function

h(x) =

{
1 || x if | x |= n
0 || g(x) otherwise

is still collision-resistant but not preimage resistant
For all h(x) that begin with 1, it is trivial to find a preimage
(just drop the 1)

cbd Rolf Oppliger 11

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.1 Introduction

The notion of a collision can be generalized to multicollisions

More specifically, an r-collision is an r -tuple (x1, . . . , xr) with
h(x1) = . . . = h(xr)

For r = 2, a 2-collision is a “normal” collision

Finding multicollisions is not substantially more difficult than
finding “normal” collisions

cbd Rolf Oppliger 12

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.1 Introduction

In practice, Σin and Σout are often set to {0, 1}
A respective hash function is a mapping from {0, 1}∗ to
{0, 1}n

A practically relevant question is how large n should be

There is a trade-off here, i.e., n should be as short as possible,
but as long as needed

A lower bound for n is obtained by the birthday attack that
exploits the birthday paradox (e.g., n ≥ 256 to achieve a
128-bit security level)

cbd Rolf Oppliger 13

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.1 Introduction

In general, there are many ways to construct a cryptographic
hash function

According to ISO/IEC 10118-1

Hash functions that employ block ciphers (ISO/IEC 10118-2)
Dedicated hash functions (ISO/IEC 10118-3)
Hash functions based on modular arithmetic (ISO/IEC
10118-4)

Mainly due to their performance advantages, dedicated hash
functions are usually the preferred choice

Most functions employ the Merkle-Damg̊ard construction
and yield iterated hash functions

cbd Rolf Oppliger 14

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.2 Merkle-Damg̊ard Construction

In the late 1980s, Ralph C. Merkle and Ivan B. Damg̊ard
independently proposed a construction that can be used to
turn a collision-resistant compression function f : Σb+l −→ Σl

(with b, l ∈ N) into an iterated hash function h

f
l bitsl bits

b bits

cbd Rolf Oppliger 15

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.2 Merkle-Damg̊ard Construction

There are many possibilities to design and come up with a
compression function f

A popular (i.e., widely used) possibility is a Davies-Meyer
compression function

It applies a block cipher E on a chaining value Hi , where the
respective message block xi serves as the key:

Hi = Exi (Hi−1)⊕ Hi−1 for i = 1, . . . , n

cbd Rolf Oppliger 16

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.2 Merkle-Damg̊ard Construction

In a typical setting, l is 160 or 256 bits and b is 512 bits

An iterated hash function looks as follows:

f
IV=H

x1 x2

f f

xn

g h(x)
0

H1 Hn

cbd Rolf Oppliger 17

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.2 Merkle-Damg̊ard Construction

Such a function h can be defined as follows:

H0 = IV

Hi = f (Hi−1, xi) for i = 1, . . . , n

h(x) = g(Hn)

The message x must be padded to a multiple of b bits

The padding method of choice is to append (at the end of the
message) a 1, a variable number of 0s, and the binary
encoding of the message length

cbd Rolf Oppliger 18

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.2 Merkle-Damg̊ard Construction

Merkle and Damg̊ard showed that finding a collision for h is
at least as hard as finding a collision for f

Theorem (Merkle-Damg̊ard)

If the compression function f is collision-resistant, then the
iterated hash function h that is built according to the
Merkle-Damg̊ard construction is also collision-resistant

There are only a few cryptographic hash functions that don’t
employ the Merkle-Damg̊ard construction (e.g., Keccak)

cbd Rolf Oppliger 19

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.3 Historical Perspective

The first cryptographic hash function was developed in the
1980s by RSA Security (acronymed MD for “message digest”)

It was proprietary and never published

MD2 (RFC 1319) was the first cryptographic hash function
that was published and used in the field

After the announcemnet of SNEFRU by Ralph C. Merkle,
RSA Security released MD4 (RFC 1320)

In 1991, SNEFRU and some other hash functions were broken
and weaknesses were found in MD4

As a result, RSA Security came up with MD5 (RFC 1321)
and released RFCs 1319 – 1321 in April 1992

cbd Rolf Oppliger 20

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.3 Historical Perspective

In 1993, the U.S. NIST proposed the Secure Hash
Algorithm (SHA), which is similar to MD5, but more
strengthened and a little bit slower

Probably after discovering a never-published weakness in the
original SHA proposal, the U.S. NIST released SHA-1

In 1995, SHA-1 was specified in FIPS PUB 180 (later in RFC
4634) and has been revised multiple times since then

The latest revision is FIPS PUB 180-4 (August 2015)

It also introduces the SHA-2 family

cbd Rolf Oppliger 21

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.3 Historical Perspective

Table 6.1
Secure Hash Algorithms as Specified in FIPS 180-4

Algorithm Message Size Block Size Word Size Hash Value Size

SHA-1 < 264 bits 512 bits 32 bits 160 bits
SHA-224 < 264 bits 512 bits 32 bits 224 bits
SHA-256 < 264 bits 512 bits 32 bits 256 bits
SHA-384 < 2128 bits 1,024 bits 64 bits 384 bits
SHA-512 < 2128 bits 1,024 bits 64 bits 512 bits
SHA-512/224 < 2128 bits 1,024 bits 64 bits 224 bits
SHA-512/256 < 2128 bits 1,024 bits 64 bits 256 bits

cbd Rolf Oppliger 22

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.3 Historical Perspective

During the 1990s, a series of results showed that MD4 was
insecure and MD5 was partially broken

In the early 2000s, a group of Chinese researchers (headed by
Xiaoyun Wang) published collisions for MD4, MD5, and a few
other cryptographic hash functions

In 2008, a Dutch research group (headed by Arjen Lenstra)
found a way to exploit an MD5 collision to create a rogue CA
certificate

Consequently, MD4, MD5, and a few other cryptographic
hash functions should no longer be used (they may still serve
as study objects)

cbd Rolf Oppliger 23

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.3 Historical Perspective

In 2005, Wang et al. also presented collisions for SHA-1

The original attack required 269 (instead of 280) hash
operations to find a collision, but it can be improved to 263

The attack was widely discussed in the media and led to a
better adoption of SHA-2

Also, a NIST competition for SHA-3 was initiated

In 2012, Keccak was announced as the winner of the
competition

RIPEMD and RIPEMD-160 are European versions of MD5
and SHA-1 (not further addressed)

cbd Rolf Oppliger 24

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD4

MD4 follows the Merkle-Damg̊ard construction and uses a
Davies-Meyer compression function with b = 512 and l = 128

The output length is 128 bits

The function was designed to be efficiently executed on 32-bit
processors with a little-endian architecture

This means that a 4-byte word a1a2a3a4 is stored as a4a3a2a1,
representing the integer a4224 + a3216 + a228 + a1

cbd Rolf Oppliger 25

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD4

Let m = m0m1 . . .ms−1 be an s-bit message

MD4 first generates an array w of n 32-bit words

w = w [0] ‖ [1] ‖ . . . ‖ w [n − 1]

where n is a multiple of 16, i.e., n ≡ 0 (mod 16)

Hence, the bitlength of w is a multiple of 32 · 16 = 512 bits

w [0] = m0m1 . . .m31

w [1] = m32m33 . . .m63

. . .

w [n − 1] = ms−32ms−31 . . .ms−1

cbd Rolf Oppliger 26

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD4

More specifically, w is constructed in two steps:

First, m is padded (with a 1 and variable number of 0s) so
that the bitlength is congruent to 448 modulo 512 (i.e., 64 bits
short of being a multiple of 512 bits)
Second, a 64-bit binary representation of s is appended (to
form the last two words of w)

Original message 10000000000000 (s)

1 - 512 bits 64 bits

2

Multiple of 512 bits

cbd Rolf Oppliger 27

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD4

F , g , and h are logical functions

f (X ,Y ,Z) = (X ∧ Y) ∨ ((¬X) ∧ Z)

g(X ,Y ,Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

h(X ,Y ,Z) = X ⊕ Y ⊕ Z

C1 and c2 are constants

W
y←↩ c refers to the c-bit left

rotation (circular left shift) of word
w (0 ≤ c ≤ 31)

X Y Z f g h

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 1 1 1

cbd Rolf Oppliger 28

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD4

Overview:

(m)

Construct w = w [0] ‖ w [1] ‖ . . . ‖ w [n − 1]
A = 0x67452301

B = 0xEFCDAB89

C = 0x98BADCFE

D = 0x10325476

for i = 0 to n/16− 1 do
for j = 0 to 15 do X [j] = w [i · 16 + j]
A′ = A
B′ = B
C ′ = C
D′ = D
Round 1
Round 2
Round 3
A = A + A′

B = B + B′

C = C + C ′

D = D + D′

(h(m) = A ‖ B ‖ C ‖ D)

Round 1:

1. A = (A + f (B, C ,D) + X [0])
y
←↩ 3

2. D = (D + f (A, B, C) + X [1])
y
←↩ 7

3. C = (C + f (D, A, B) + X [2])
y
←↩ 11

4. B = (B + f (C ,D, A) + X [3])
y
←↩ 19

5. A = (A + f (B, C ,D) + X [4])
y
←↩ 3

6. D = (D + f (A, B, C) + X [5])
y
←↩ 7

7. C = (C + f (D, A, B) + X [6])
y
←↩ 11

8. B = (B + f (C ,D, A) + X [7])
y
←↩ 19

9. A = (A + f (B, C ,D) + X [8])
y
←↩ 3

10. D = (D + f (A, B, C) + X [9])
y
←↩ 7

11. C = (C + f (D, A, B) + X [10])
y
←↩ 11

12. B = (B + f (C ,D, A) + X [11])
y
←↩ 19

13. A = (A + f (B, C ,D) + X [12])
y
←↩ 3

14. D = (D + f (A, B, C) + X [13])
y
←↩ 7

15. C = (C + f (D, A, B) + X [14])
y
←↩ 11

16. B = (B + f (C ,D, A) + X [15])
y
←↩ 19

cbd Rolf Oppliger 29

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD4

Round 2:

1. A = (A + g(B, C ,D) + X [0] + c1)
y
←↩ 3

2. D = (D + g(A, B, C) + X [4] + c1)
y
←↩ 5

3. C = (C + g(D, A, B) + X [8] + c1)
y
←↩ 9

4. B = (B + g(C ,D, A) + X [12] + c1)
y
←↩ 13

5. A = (A + g(B, C ,D) + X [1] + c1)
y
←↩ 3

6. D = (D + g(A, B, C) + X [5] + c1)
y
←↩ 5

7. C = (C + g(D, A, B) + X [9] + c1)
y
←↩ 9

8. B = (B + g(C ,D, A) + X [13] + c1)
y
←↩ 13

9. A = (A + g(B, C ,D) + X [2] + c1)
y
←↩ 3

10. D = (D + g(A, B, C) + X [6] + c1)
y
←↩ 5

11. C = (C + g(D, A, B) + X [10] + c1)
y
←↩ 9

12. B = (B + g(C ,D, A) + X [14] + c1)
y
←↩ 13

13. A = (A + g(B, C ,D) + X [3] + c1)
y
←↩ 3

14. D = (D + g(A, B, C) + X [7] + c1)
y
←↩ 5

15. C = (C + g(D, A, B) + X [11] + c1)
y
←↩ 9

16. B = (B + g(C ,D, A) + X [15] + c1)
y
←↩ 13

Round 3:

1. A = (A + h(B, C ,D) + X [0] + c2)
y
←↩ 3

2. D = (D + h(A, B, C) + X [8] + c2)
y
←↩ 9

3. C = (C + h(D, A, B) + X [4] + c2)
y
←↩ 11

4. B = (B + h(C ,D, A) + X [12] + c2)
y
←↩ 15

5. A = (A + h(B, C ,D) + X [2] + c2)
y
←↩ 3

6. D = (D + h(A, B, C) + X [10] + c2)
y
←↩ 9

7. C = (C + h(D, A, B) + X [6] + c2)
y
←↩ 11

8. B = (B + h(C ,D, A) + X [14] + c2)
y
←↩ 15

9. A = (A + h(B, C ,D) + X [1] + c2)
y
←↩ 3

10. D = (D + h(A, B, C) + X [9] + c2)
y
←↩ 9

11. C = (C + h(D, A, B) + X [5] + c2)
y
←↩ 11

12. B = (B + h(C ,D, A) + X [13] + c2)
y
←↩ 15

13. A = (A + h(B, C ,D) + X [3] + c2)
y
←↩ 3

14. D = (D + h(A, B, C) + X [11] + c2)
y
←↩ 9

15. C = (C + h(D, A, B) + X [7] + c2)
y
←↩ 11

16. B = (B + h(C ,D, A) + X [15] + c2)
y
←↩ 15

cbd Rolf Oppliger 30

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD5

MD5 is a strengthened version of MD4

It is conceptually and structurally similar to MD4

The main difference is that MD5 invokes 4 rounds (instead of
only 3)

This is advantageous from a security viewpoint, but it is
disadvantageous from a performance viewpoint (i.e.,
performance decreases one third)

MD5 uses a slightly modified function f , an additional
function i , and a word table T with 64 entries that is
constructed from the sine function (instead of c1 and c2)

cbd Rolf Oppliger 31

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD5

Overview:

(m)

Construct w = w [0] ‖ w [1] ‖ . . . ‖ w [n − 1]
A = 0x67452301

B = 0xEFCDAB89

C = 0x98BADCFE

D = 0x10325476

for i = 0 to n/16− 1 do
for j = 0 to 15 do X [j] = w [i · 16 + j]
A′ = A
B′ = B
C ′ = C
D′ = D
Round 1
Round 2
Round 3
Round 4
A = A + A′

B = B + B′

C = C + C ′

D = D + D′

(h(m) = A ‖ B ‖ C ‖ D)

Round 1:

1. A = (A + f (B, C ,D) + X [0] + T [1])
y
←↩ 7

2. D = (D + f (A, B, C) + X [1] + T [2])
y
←↩ 12

3. C = (C + f (D, A, B) + X [2] + T [3])
y
←↩ 17

4. B = (B + f (C ,D, A) + X [3] + T [4])
y
←↩ 22

5. A = (A + f (B, C ,D) + X [4] + T [5])
y
←↩ 7

6. D = (D + f (A, B, C) + X [5] + T [6])
y
←↩ 12

7. C = (C + f (D, A, B) + X [6] + T [7])
y
←↩ 17

8. B = (B + f (C ,D, A) + X [7] + T [8])
y
←↩ 22

9. A = (A + f (B, C ,D) + X [8] + T [9])
y
←↩ 7

10. D = (D + f (A, B, C) + X [9] + T [10])
y
←↩ 12

11. C = (C + f (D, A, B) + X [10] + T [11])
y
←↩ 17

12. B = (B + f (C ,D, A) + X [11] + T [12])
y
←↩ 22

13. A = (A + f (B, C ,D) + X [12] + T [13])
y
←↩ 7

14. D = (D + f (A, B, C) + X [13] + T [14])
y
←↩ 12

15. C = (C + f (D, A, B) + X [14] + T [15])
y
←↩ 17

16. B = (B + f (C ,D, A) + X [15] + T [16])
y
←↩ 22

cbd Rolf Oppliger 32

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD5

Round 2:

1. A = (A + g(B, C ,D) + X [1] + T [17])
y
←↩ 5

2. D = (D + g(A, B, C) + X [6] + T [18])
y
←↩ 9

3. C = (C + g(D, A, B) + X [11] + T [19])
y
←↩ 14

4. B = (B + g(C ,D, A) + X [0] + T [20])
y
←↩ 20

5. A = (A + g(B, C ,D) + X [5] + T [21])
y
←↩ 5

6. D = (D + g(A, B, C) + X [10] + T [22])
y
←↩ 9

7. C = (C + g(D, A, B) + X [15] + T [23])
y
←↩ 14

8. B = (B + g(C ,D, A) + X [4] + T [24])
y
←↩ 20

9. A = (A + g(B, C ,D) + X [9] + T [25])
y
←↩ 5

10. D = (D + g(A, B, C) + X [14] + T [26])
y
←↩ 9

11. C = (C + g(D, A, B) + X [3] + T [27])
y
←↩ 14

12. B = (B + g(C ,D, A) + X [8] + T [28])
y
←↩ 20

13. A = (A + g(B, C ,D) + X [13] + T [29])
y
←↩ 5

14. D = (D + g(A, B, C) + X [2] + T [30])
y
←↩ 9

15. C = (C + g(D, A, B) + X [7] + T [31])
y
←↩ 14

16. B = (B + g(C ,D, A) + X [12] + T [32])
y
←↩ 20

Round 3:

1. A = (A + h(B, C ,D) + X [5] + T [33])
y
←↩ 4

2. D = (D + h(A, B, C) + X [8] + T [34])
y
←↩ 11

3. C = (C + h(D, A, B) + X [11] + T [35])
y
←↩ 16

4. B = (B + h(C ,D, A) + X [14] + T [36])
y
←↩ 23

5. A = (A + h(B, C ,D) + X [1] + T [37])
y
←↩ 4

6. D = (D + h(A, B, C) + X [4] + T [38])
y
←↩ 11

7. C = (C + h(D, A, B) + X [7] + T [39])
y
←↩ 16

8. B = (B + h(C ,D, A) + X [10] + T [40])
y
←↩ 23

9. A = (A + h(B, C ,D) + X [13] + T [41])
y
←↩ 4

10. D = (D + h(A, B, C) + X [0] + T [42])
y
←↩ 11

11. C = (C + h(D, A, B) + X [3] + T [43])
y
←↩ 16

12. B = (B + h(C ,D, A) + X [6] + T [44])
y
←↩ 23

13. A = (A + h(B, C ,D) + X [9] + T [45])
y
←↩ 4

14. D = (D + h(A, B, C) + X [12] + T [46])
y
←↩ 11

15. C = (C + h(D, A, B) + X [15] + T [47])
y
←↩ 16

16. B = (B + h(C ,D, A) + X [2] + T [48])
y
←↩ 23

cbd Rolf Oppliger 33

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — MD5

Round 4:

1. A = (A + i(B, C ,D) + X [0] + T [49])
y
←↩ 6

2. D = (D + i(A, B, C) + X [7] + T [50])
y
←↩ 10

3. C = (C + i(D, A, B) + X [14] + T [51])
y
←↩ 15

4. B = (B + i(C ,D, A) + X [5] + T [52])
y
←↩ 21

5. A = (A + i(B, C ,D) + X [12] + T [53])
y
←↩ 6

6. D = (D + i(A, B, C) + X [3] + T [54])
y
←↩ 10

7. C = (C + i(D, A, B) + X [10] + T [55])
y
←↩ 15

8. B = (B + i(C ,D, A) + X [1] + T [56])
y
←↩ 21

9. A = (A + i(B, C ,D) + X [8] + T [57])
y
←↩ 6

10. D = (D + i(A, B, C) + X [15] + T [58])
y
←↩ 10

11. C = (C + i(D, A, B) + X [6] + T [59])
y
←↩ 15

12. B = (B + i(C ,D, A) + X [13] + T [60])
y
←↩ 21

13. A = (A + i(B, C ,D) + X [4] + T [61])
y
←↩ 6

14. D = (D + i(A, B, C) + X [11] + T [62])
y
←↩ 10

15. C = (C + i(D, A, B) + X [2] + T [63])
y
←↩ 15

16. B = (B + i(C ,D, A) + X [9] + T [64])
y
←↩ 21

MD5 is susceptible to
collision attacks

While a “normal” attack
requires 264 hash
computations, the collision
attack of Wang et al.
requires 239 and the
best-known attack 232

This value is so small that
MD5 must not be used
anymore

cbd Rolf Oppliger 34

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-1

SHA-1 was specified by the U.S. NIST in FIPS PUB 180
(currently FIPS PUB 180-4)

Again, it is conceptually and structurally similar to MD5

Major differences

SHA-1 is optimized for computer systems with a big-endian
architecture (instead of a little-endian architecture)
SHA-1 employs 5 registers A, B, C , D, and E (instead of 4)
SHA-1 yields 160-bit hash values (instead of 128-bit hash
values)

cbd Rolf Oppliger 35

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-1

Instead of f , g , h, and i , SHA-1 uses a sequence of 80 logical
functions f0, f1, . . . , f79:

ft(X ,Y ,Z) =


Ch(X ,Y ,Z) = (X ∧ Y)⊕ ((¬X) ∧ Z) 0 ≤ t ≤ 19
Parity(X ,Y ,Z) = X ⊕ Y ⊕ Z 20 ≤ t ≤ 39
Maj(X ,Y ,Z) = (X ∧ Y)⊕ (X ∧ Z)⊕ (Y ∧ Z) 40 ≤ t ≤ 59
Parity(X ,Y ,Z) = X ⊕ Y ⊕ Z 60 ≤ t ≤ 79

Note that the Parity function occurs twice (20 ≤ t ≤ 39 and
60 ≤ t ≤ 79), and that Ch and Maj are similar to f and g (∨
is replaced with ⊕, but this doesn’t change the result)

cbd Rolf Oppliger 36

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-1

Instead of c1 and c2 (MD4) or the 64 words of table T
(MD5), SHA-1 uses 4 constant 32-bit words that are used to
build a sequence of 80 words K0, K1, . . . , K79:

Kt =


b230
√

2c = 0x5A827999 0 ≤ t ≤ 19

b230
√

3c = 0x6ED9EBA1 20 ≤ t ≤ 39

b230
√

5c = 0x8F1BBCDC 40 ≤ t ≤ 59

b230
√

10c = 0xCA62C1D6 60 ≤ t ≤ 79

cbd Rolf Oppliger 37

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-1

While w is an array of 32-bit words in MD4 and MD5, SHA-1
uses an array b of 16-word blocks instead

Hence, b[i] (i = 0, 1, . . . , n− 1) refers to a 16-word block that
is 16 · 32 = 512 bits long
SHA-1 uses each 16-word block b to recursively derive an
80-word message schedule W :

Wt =

{
bt 0 ≤ t ≤ 15

(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)
y
←↩ 1 16 ≤ t ≤ 79

The 16 words of b become the first 16 words of W , and the
remaining 80− 16 = 64 words of W are generated according
to the formula

cbd Rolf Oppliger 38

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-1

Overview:

(m)

Construct b = b[0] ‖ b[1] ‖ . . . ‖ b[n − 1]
A = 0x67452301

B = 0xEFCDAB89

C = 0x98BADCFE

D = 0x10325476

E = 0xC3D2E1F0

for i = 0 to n − 1 do
Derive message schedule W from b[i]
A′ = A
B′ = B
C ′ = C
D′ = D
E ′ = E
|

|
for t = 0 to 79 do

T = (A
y
←↩ 5) + ft (B, C ,D) + E + Kt + Wt

E = D
D = C

C = B
y
←↩ 30

B = A
A = T

A = A + A′

B = B + B′

C = C + C ′

D = D + D′

E = E + E ′

(h(m) = A ‖ B ‖ C ‖ D ‖ E)

cbd Rolf Oppliger 39

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-1

SHA-1 was first broken in 2005 (269 instead of 280 hash
computations)

The attack was later improved (263 hash computations)

In 2011, the U.S. NIST deprecated SHA-1, and disallowed its
use for digital signatures by the end of 2013

Two recent attacks have brought SHA-1 to the end of its life
cycle

SHAttered (2017)
SHA-1 is a Shambles (2019)

cbd Rolf Oppliger 40

Cryptography 101: From Theory to Practice

https://shattered.io
https://sha-mbles.github.io
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

The functions of the SHA-2 family are listed in Table 6.1

The functions employ the Ch and Maj functions from SHA-1
(applied to 32-bit or 64-bit words)

In the case of SHA-224 and SHA-256, these functions are
complemented by 4 32-bit functions:

Σ
{256}
0 (X) = (X

x
↪→ 2)⊕ (X

x
↪→ 13)⊕ (X

x
↪→ 22)

Σ
{256}
1 (X) = (X

x
↪→ 6)⊕ (X

x
↪→ 11)⊕ (X

x
↪→ 25)

σ
{256}
0 (X) = (X

x
↪→ 7)⊕ (X

x
↪→ 18)⊕ (X ↪→ 3)

σ
{256}
1 (X) = (X

x
↪→ 17)⊕ (X

x
↪→ 19)⊕ (X ↪→ 10)

Note that ↪→ refers to the c-bit right shift operator

cbd Rolf Oppliger 41

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

All other hash functions from the SHA-2 family use similar
64-bit functions:

Σ
{512}
0 (X) = (X

x
↪→ 28)⊕ (X

x
↪→ 34)⊕ (X

x
↪→ 39)

Σ
{512}
1 (X) = (X

x
↪→ 14)⊕ (X

x
↪→ 18)⊕ (X

x
↪→ 41)

σ
{512}
0 (X) = (X

x
↪→ 1)⊕ (X

x
↪→ 8)⊕ (X ↪→ 7)

σ
{512}
1 (X) = (X

x
↪→ 19)⊕ (X

x
↪→ 61)⊕ (X ↪→ 6)

All Σ-functions are used in the round functions, whereas all
σ-functions are used to derive the message schedule W

cbd Rolf Oppliger 42

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

While SHA-1 uses four 32-bit words to represent the
constants K0,K1, . . . ,K79, SHA-224 and SHA-256 use a
sequence of 64 distinct 32-bit words that serve as constants

K
{256}
0 ,K

{256}
1 , . . . ,K

{256}
63

The 64 words are generated by taking the first 32 bits of the
fractional parts of the cube roots of the first 64 prime
numbers (not addressed here)

cbd Rolf Oppliger 43

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

Similarly, SHA-384, SHA-512, SHA-512/224, and
SHA-512/256 use a sequence of 80 distinct 64-bit words that
serve as constants

K
{512}
0 ,K

{512}
1 , . . . ,K

{512}
79

The 80 words represent the first 64 bits of the fractional parts
of the cube roots of the first 80 prime numbers (so the first
32 bits of the first 64 values are the same as with SHA-224
and SHA-256)

cbd Rolf Oppliger 44

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

While SHA-224 and SHA-256 require messages to be padded
to a multiple of 512 bits, all other SHA-2 hash functions
require messages to be padded to a multiple of 1024 bits

In this case, the length of the original message is encoded in
the final two 64-bit words (instead of two 32-bit words)

All functions from the SHA-2 family operate on 8 32- or
64-bit registers A, B, C , D, E , F , G , and H

The registers are initialized in a particular way (not addressed
here)

cbd Rolf Oppliger 45

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

SHA-256 uses
message schedule W
(with 64 words) and
two temporary
variables T1 and T2

(→ animation)

SHA-224 uses
different initialization
values and truncates
the output to 224 bits

(m)

Construct b = b[0] ‖ b[1] ‖ . . . ‖ b[n − 1]
A = 0x6A09E667 B = 0xBB67AE85

C = 0x3C6EF372 D = 0xA54FF53A

E = 0x510E527F F = 0x9B05688C

G = 0x1F83D9AB H = 0x5BE0CD19

for i = 0 to n − 1 do
Derive message schedule W from b[i]
A′ = A B′ = B C ′ = C D′ = D
E ′ = E F ′ = F G ′ = G H′ = H
for t = 0 to 63 do

T1 = H + Σ
{256}
1 (E) + Ch(E , F , G) + K

{256}
t + Wt

T2 = Σ
{256}
0 (A) + Maj(A, B, C)

H = G G = F
E = D + T1 D = C
C = B B = A
A = T1 + T2

A = A + A′ B = B + B′ C = C + C ′

D = D + D′ E = E + E ′ F = F + F ′

G = G + G ′ H = H + H′

(h(m) = A ‖ B ‖ C ‖ D ‖ E ‖ F ‖ G ‖ H)

cbd Rolf Oppliger 46

Cryptography 101: From Theory to Practice

https://sha256algorithm.com
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

SHA-512 uses 64-bit
words, the same
message schedule W
(with 80 words), and
T1 and T2

SHA-384, SHA-512/
224, and SHA-512/
256 use different
initialization values
and truncate the
output

(m)

Construct b = b[0] ‖ b[1] ‖ . . . ‖ b[n − 1]
A = 0x6A09E667F3BCC908 B = 0xBB67AE8584CAA73B

C = 0x3C6EF372FE94F82B D = 0xA54FF53A5F1D36F1

E = 0x510E527FADE682D1 F = 0x9B05688C2B3E6C1F

G = 0x1F83D9ABFB41BD6B H = 0x5BE0CD19137E2179

for i = 0 to n − 1 do
Derive message schedule W from b[i]
A′ = A B′ = B C ′ = C D′ = D
E ′ = E F ′ = F G ′ = G H′ = H
for t = 0 to 79 do

T1 = H + Σ
{512}
1 (E) + Ch(E , F , G) + K

{512}
t + Wt

T2 = Σ
{512}
0 (A) + Maj(A, B, C)

H = G G = F
E = D + T1 D = C
C = B B = A
A = T1 + T2

A = A + A′ B = B + B′ C = C + C ′ D = D + D′

E = E + E ′ F = F + F ′ G = G + G ′ H = H + H′

(h(m) = A ‖ B ‖ C ‖ D ‖ E ‖ F ‖ G ‖ H)

cbd Rolf Oppliger 47

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — SHA-2 family

As of this writing, the cryptographic hash functions from the
SHA-2 family are considered to be secure

They are used in many applications, such as Bitcoin (double
SHA-2) and many other cryptocurrencies

There is no need to replace them in the short term

If one is worried about quantum computers, then SHA-384
and SHA-512 can be used

cbd Rolf Oppliger 48

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Keccak is the algorithm selected by the U.S. NIST as the
winner of the public SHA-3 competition in 2012

FIPS PUB 202 complements FIPS PUB 180-4

It specifies 4 cryptographic hash functions and 2
extendable-output functions (XOFs)

SHA3-224, SHA3-256, SHA3-384, and SHA3-512
SHAKE128 and SHAKE256 (where SHAKE stands for “Secure
Hash Algorithm with Keccak”)

Keccak/SHA-3 relies on the sponge construction (instead
of the Merkle-Damg̊ard construction)

cbd Rolf Oppliger 49

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

In December 2016, NIST released SP 800-18540 that specifies
complementary functions derived from Keccak/SHA-3

Customizable SHAKE (cSHAKE) is a SHAKE XOF that
can be customized with a particular bit string to provide
domain separation (conceptually similar to a “salt”)
KMAC is a keyed MAC construction that is based on Keccak
TupleHash is a SHA-3-derived function that can be used to
hash a tuple of input strings (that are uniquely serialized)
ParallelHash takes advantage of the parallelism available in
some modern processors

cbd Rolf Oppliger 50

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

The sponge construction is based
on a permutation operating on a
data structure known as the state

The state can either be seen as a
(one-dimensional) b-bit string S or
a three-dimensional array A[x , y , z]
of bits with appropriate values for
x , y , and z (i.e., xyz ≤ b)

c© keccak.team

cbd Rolf Oppliger 51

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

In the case of SHA-3, b = 1600, 0 ≤ x , y < 5, and 0 ≤ z < w
(where w = 2l = 64 for l = 6)

Consequently, the state is either a 1600-bit string S or a
(5× 5× 64)-array A of 1600 bits

For all 0 ≤ x , y < 5 and 0 ≤ z < w , the relationship between
S and A is as follows:

A[x , y , z] = S [w(5y + x) + z]

A[0, 0, 0] translates to S [0], whereas A[4, 4, 63] translates to
S [64((5 · 4) + 4) + 63] = S [64 · 24 + 63] = S [1599]

cbd Rolf Oppliger 52

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

S = A = plane[0] ‖ plane[1] ‖ . . . ‖ plane[4]

= lane[0, 0] ‖ lane[1, 0] ‖ . . . ‖ lane[4, 0] ‖
lane[0, 1] ‖ lane[1, 1] ‖ . . . ‖ lane[4, 1] ‖
lane[0, 2] ‖ lane[1, 2] ‖ . . . ‖ lane[4, 2] ‖
lane[0, 3] ‖ lane[1, 3] ‖ . . . ‖ lane[4, 3] ‖
lane[0, 4] ‖ lane[1, 4] ‖ . . . ‖ lane[4, 4]

= bit[0, 0, 0] ‖ bit[0, 0, 1] ‖ bit[0, 0, 2] ‖ . . . ‖ bit[0, 0, 63] ‖
bit[1, 0, 0] ‖ bit[1, 0, 1] ‖ bit[1, 0, 2] ‖ . . . ‖ bit[1, 0, 63] ‖
bit[2, 0, 0] ‖ bit[2, 0, 1] ‖ bit[2, 0, 2] ‖ . . . ‖ bit[2, 0, 63] ‖
. . .

bit[3, 4, 0] ‖ bit[3, 4, 1] ‖ bit[3, 4, 2] ‖ . . . ‖ bit[3, 4, 63] ‖
bit[4, 4, 0] ‖ bit[4, 4, 1] ‖ bit[4, 4, 2] ‖ . . . ‖ bit[4, 4, 63]

cbd Rolf Oppliger 53

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

The sponge construction operates in 2 phases:

In the absorbing or input phase, the n message blocks
x0, x1, . . . , xn−1 are consumed and read into the state
In the squeezing or output phase, an output y0, y1, y2, . . . of
configurable length is generated from the state

c© keccak.team

cbd Rolf Oppliger 54

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

There are a few parameters to configure the input and output
sizes as well as the security of Keccak

The state width b can take any value b = 5 · 5 · 2l = 25 · 2l for
l = 0, 1, . . . , 6 (i.e., 25, 50, 100, 200, 400, 800, or 1600 bits)
The bit rate r determines the number of input bits that are
processed simultaneously
The capacity c refers to the double security level of the
construction

In either case, b = r + c

cbd Rolf Oppliger 55

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Table 6.6
The Keccak Parameter Values for the SHA-3 Hash Functions

Hash Function n b r c w

SHA3-224 224 1600 1152 448 64
SHA3-256 256 1600 1088 512 64
SHA3-384 384 1600 832 768 64
SHA3-512 512 1600 576 1024 64

Note that b = 1600 and w = 64 in all versions of SHA-3

cbd Rolf Oppliger 56

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Before a message m can be processed, it must be padded
properly (to make sure that the input is a multiple of r bits
long)

It uses a padding scheme known as multirate padding

Padding(m) = m ‖ p ‖ 10∗1︸ ︷︷ ︸
multiple of r

The value of bit string p depends on the mode

2-bit string 01 for hashing
4-bit string 1111 for generating a variable-length output

cbd Rolf Oppliger 57

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

The sponge construction is based on a permutation of the
state (called f -function or f -permutation)

The same f -function is used in the absorbing and squeezing
phases

It takes b = r + c bits as input and generates an output of
the same length

Internally, the f -function consists of nr round functions with
the same input and output behavior

cbd Rolf Oppliger 58

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Remember that l determines the state width according to
b = 25 · 2l (SHA-3 uses the fixed values l = 6 and hence
b = 1600)

The value l also determines nr , i.e., the number of rounds,
according to nr = 12 + 2l

So the possible state widths 25, 50, 100, 200, 400, 800, and
1600 come along with respective numbers of rounds, i.e., 12,
14, 16, 18, 20, 22, and 24

As SHA-3 fixes the state width to 1600 bits, the number of
rounds is also fixed to 24, i.e., nr = 24

cbd Rolf Oppliger 59

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Keccak absorbing phase

cbd Rolf Oppliger 60

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Keccak squeezing phase

cbd Rolf Oppliger 61

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

In each round, a sequence of five step mappings is executed,
where each mapping operates on the b bits of the state

Each step mapping takes a state array A as input and returns
an updated state array A′ as output

The five step mappings are denoted by Greek letters, i.e.,
theta (θ), rho (ρ), pi (π), chi (χ), and iota (ι)

While θ must be applied first, the order of the other mappings
is arbitrary and does not matter (and ρ and π are often
applied simultaneously)

cbd Rolf Oppliger 62

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

The step mappings are relatively simple to capture visually,
but more difficult to capture mathematically

The x- and y -axes are labeled in an unusual manner

Table 6.7
The (x , y)-Coordinates of the Bits in a Slice

(3,2) (4,2) (0,2) (1,2) (2,2)

(3,1) (4,1) (0,1) (1,1) (2,1)

(3,0) (4,0) (0,0) (1,0) (2,0)

(3,4) (4,4) (0,4) (1,4) (2,4)

(3,3) (4,3) (0,3) (1,3) (2,3)

cbd Rolf Oppliger 63

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

The step mappings mainly operate on lanes, i.e., w -bit words
that can be processed in a register on a modern processor
(lane[x , y] refers to A[x , y , ·])
The (mathematical) operations include the addition and
multiplication modulo 2, i.e., the bitwise addition and
multiplication in GF (2)

This suggests that the addition is equal to the Boolean XOR
operation (⊕) and the multiplication is equal to the Boolean
AND operation (∧)

With the exception of the round constants RC[ir] used in ι
(iota), the step mappings are the same in all rounds

cbd Rolf Oppliger 64

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Step mapping θ (theta)

x

y z z

c© keccak.team

cbd Rolf Oppliger 65

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

A′[x0, y0, z0] = A[x0, y0, z0] ⊕
4⊕

y=0

A[(x0 − 1) mod 5, y , z0]

⊕
4⊕

y=0

A[(x0 + 1) mod 5, y , (z0 − 1) mod w]

cbd Rolf Oppliger 66

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Algorithm to compute θ (theta)

(A)

for x = 0 to 4 do
for z = 0 to w − 1 do

C[x, z] = A[x, 0, z]⊕ A[x, 1, z]⊕ A[x, 2, z]⊕ A[x, 3, z]⊕ A[x, 4, z]
for x = 0 to 4 do

for z = 0 to w − 1 do
D[x, z] = C[(x − 1) mod 5, z]⊕ C[(x + 1) mod 5, (z − 1) mod w]

for x = 0 to 4 do
for y = 0 to 4 do

for z = 0 to w − 1 do
A′[x, y, z] = A[x, y, z]⊕ D[x, z]

(A′)

cbd Rolf Oppliger 67

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Step mapping ρ (rho) rotates the bits in each lane for a
certain amount of bits (offset), while step mapping π (pi)
permutes the position of the lanes

Both mappings can be combined and expressed as

lane[y , 2x + 3y] = lane[x , y]
x
↪→ r [x , y]

or

A′[y , 2x + 3y , ·] = A[x , y , ·] x
↪→ r [x , y]

cbd Rolf Oppliger 68

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Step mapping ρ (rho)

c© keccak.team

cbd Rolf Oppliger 69

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Table 6.8 (new)
The Offset Values Used by the Step Mapping ρ

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 43
y = 1 55 20 36 44 6
y = 0 28 27 0 1 62
y = 4 56 14 18 2 61
y = 3 21 8 41 45 15

cbd Rolf Oppliger 70

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Algorithm to compute ρ (rho)

(A)

for z = 0 to w − 1 do A′[0, 0, z] = A[0, 0, z]
(x , y) = (1, 0)
for t = 0 to 23 do

for z = 0 to w − 1 do A′[x , y , z] = A[x , y , (z − (t + 1)(t + 2)/2) mod w]
(x , y) = (y , (2x + 3y) mod 5)

(A′)

cbd Rolf Oppliger 71

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Step mapping π (pi)

c© keccak.team

cbd Rolf Oppliger 72

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Algorithm to compute π (pi)

(A)

for x = 0 to 4 do
for y = 1 to 4 do

for z = 0 to w − 1 do A′[x , y , z] = A[(x + 3y) mod 5, x , z]

(A′)

cbd Rolf Oppliger 73

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Step mapping χ (chi) operates on
lanes

It combines lane[x , y] with
lane[x + 1, y] and lane[x + 2, y]
with the Boolean NOT (¬) XOR
(⊕), and AND (∧) operators

It is the only nonlinear step
mapping in the round function of
Keccak

c© keccak.team

cbd Rolf Oppliger 74

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

A′[x , y , ·] = A[x , y , ·]⊕ ((¬A[x + 1, y , ·]) ∧ A[x + 2, y , ·])

Algorithm to compute χ (chi)

(A)

for x = 0 to 4 do
for y = 1 to 4 do

for z = 0 to w − 1 do
A′[x, y, z] = A[x, y, z]⊕ ((A[(x + 1) mod 5, y, z]⊕ 1) · A[(x + 2) mod 5, y, z])

(A′)

cbd Rolf Oppliger 75

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Step mapping ι (iota) adds modulo 2 a round-dependent
constant RC [ir] to lane[0, 0] and leaves all other 24 lanes
unchanged

The round constants RC [ir] (for ir = 0, . . . , 23) are
constructed in a particular way (not addressed here)

A′[0, 0, ·] = A[0, 0, ·]⊕ RC[ir]

cbd Rolf Oppliger 76

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Table 6.9 (new)
The 24 Round Constants RC [ir] Employed by SHA-3

RC [0] 0x0000000000000001 RC [12] 0x000000008000808B
RC [1] 0x0000000000008082 RC [13] 0x800000000000008B
RC [2] 0x800000000000808A RC [14] 0x8000000000008089
RC [3] 0x8000000080008000 RC [15] 0x8000000000008003
RC [4] 0x000000000000808B RC [16] 0x8000000000008002
RC [5] 0x0000000080000001 RC [17] 0x8000000000000080
RC [6] 0x8000000080008081 RC [18] 0x000000000000800A
RC [7] 0x8000000000008009 RC [19] 0x800000008000000A
RC [8] 0x000000000000008A RC [20] 0x8000000080008081
RC [9] 0x0000000000000088 RC [21] 0x8000000000008080
RC [10] 0x0000000080008009 RC [22] 0x0000000080000001
RC [11] 0x000000008000000A RC [23] 0x8000000080008008

cbd Rolf Oppliger 77

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

Given a state A and round index ir , the round function Rnd is
defined as

Rnd(A, ir) = ι(χ(π(ρ(θ(A)))), ir)

The Keccak-p[b, nr] permutation consists of nr iterations of
Rnd:

(S , nr)

convert S into state A
for ir = 2l + 12− nr , . . . , 2l + 12− 1 do A = Rnd(A, ir)
convert A into b-bit string S ′

(S ′)

cbd Rolf Oppliger 78

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.4 Exemplary Hash Functions — Keccak/SHA-3

The Keccak-f family of permutations refers to the
specialization of the Keccak-p family with nr = 12 + 12l :

Keccak-f [b] = Keccak-p[b, 12 + 2l]

The Keccak-p[1600, 24] permutation that underlies the six
SHA-3 functions is equivalent to Keccak-f [1600]

There is no known attack against Keccak/SHA-3

But Keccak/SHA-3 is still not widely deployed in the field

cbd Rolf Oppliger 79

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.5 Exemplary Hash Functions — Final Remarks

Most cryptographic hash functions in use today follow the
Merkle-Damg̊ard construction and are iterated

Consequences

Since each iteration can only start if the preceding iteration
has finished, the hash function may become a performance
bottleneck
The design of compression functions that are collision-resistant
is still more of an art than a science (i.e., it lacks theoretical
foundations)

Against this background, people come up with ad hoc designs

cbd Rolf Oppliger 80

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.5 Exemplary Hash Functions — Final Remarks

Sometimes, people try to improve collision resistance by
concatenating two (or more) hash functions

For example, instead of using MD5 or SHA-1 alone, they may
apply one function after the other (e.g., SSL 3.0)

Intuition suggests that the resulting (concatenated) hash
function is more collision-resistant than each function applied
individually

In 2004, it was shown that intuition is illusive and wrong

Since then, concatenating different hash funstions is no longer
used in the field

cbd Rolf Oppliger 81

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.5 Exemplary Hash Functions — Final Remarks

An alternative design for cryptographic hash functions was
proposed by Larry Carter and Mark Wegman in late 1970s

Instead of using a single hash function, it uses families of such
functions from which a specific function is randomly selected

Such a family H consists of all hash functions h : X → Y that
map values from X to values from Y

H is called two-universal, if for every x , y ∈ X with x 6= y

Pr[h(x) = h(y)]
h

r← H
≤ 1

|Y |

cbd Rolf Oppliger 82

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

6. Cryptographic Hash Functions
6.5 Exemplary Hash Functions — Final Remarks

This suggests that the images are uniformly distributed in Y ,
and that the probability of having two images collide is as
small as possible (given the size of Y)

This notion of universality can be generalized

Using (two-)universal families of hash functions is referred to
as universal hashing

Universal hashing is the basic ingredient for Carter-Wegman
MACs (as further addressed in Chapter 10)

cbd Rolf Oppliger 83

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

Questions and Answers

cbd Rolf Oppliger 84

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 6 – Cryptographic Hash Functions

Thank you for your attention

cbd Rolf Oppliger 85

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

	Chapter 6 – Cryptographic Hash Functions

