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Outline

7. Pseudorandom
Generators

Anyone who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

— John von Neumann
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7. Pseudorandom Generators
7.1 Introduction

m According to Definition 2.7, a PRG is an efficiently
computable function that takes as input a relatively short
value of length n (i.e., seed) and generates as output a value
of length /(n) > n that appears to be random

m L(n) is a stretch function, i.e., a function that stretches an
n-bit value into a longer /(n)-bit value with n < /(n) < oo

m A PRG is a secret key cryptosystem, because the seed can be
seen as a secret key
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7. Pseudorandom Generators

7.1 Introduction

m If the input and output values are bit sequences, then the
PRG is a PRBG

m Mathematically, a PRBG G is a mapping from key space
K =1{0,1}"to {0,1}/(" ie, G : K — {0,1}/(") for which
the output appears to be random

m A proper definition of “appears to be random” is challenging,
because a PRG operates deterministically

m This is in contrast a (true) random generator
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7. Pseudorandom Generators

7.1 Introduction

m An idealized model of a
PRG consists of

State
register

m A state register (of length

|
|
|
|
|
|
|
n) HER
|
|
|
|
|
|
|
|

m A next-state or
state-transition function f
m An output function g
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7. Pseudorandom Generators

7.1 Introduction

m The state register is initialized with an n-bit seed sy

m In each cycle i > 0, the next-state function f computes s;11
from s;, i.e., siy1 = f(s;), and s; is subject to the output
function g

m The result is x; = g(s;), and the bit sequence
(Xi)i>1 = x1,%2, X3, . ...

is the output of the PRG
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7. Pseudorandom Generators

7.1 Introduction

m In the model, the function f operates recursively on the state
register, and the seed is the only input value

m Some PRGs deviate from this idealized model by allowing the
state register to be reseeded periodically

m This may be modeled by having a function f take into
account additional sources of randomness (not illustrated)

m In this case, the distinction between a PRG and a true random
generator gets fuzzy
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7. Pseudorandom Generators

7.1 Introduction

m In a PRG, the number of states is finite and depends on n,
i.e., the length of the state register

m There are at most 2" — 1 possible states

m This means that after at most 2" — 1 cycles, the register is in
the same state and the output values start repeating
themselves

m The sequence of output values is thus cyclic (with a
potentially very large cycle)

m This is why one cannot require that the output of a PRG is
truly random, but only that it appears to be so
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7. Pseudorandom Generators
7.1 Introduction

m A minimal security requirement for a PRG is that n is
sufficiently large so that an exhaustive search over all 2" — 1
possible states is computationally infeasible

m Also, the output bit sequence must pass all relevant statistical
randomness tests

m One must be cautious here, because passing statistical
randomness tests is a necessary but usually not sufficient
requirement for a PRG to be (cryptographically) secure
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7. Pseudorandom Generators

7.1 Introduction

m There are PRGs that pass most statistical randomness tests
but are inappropriate for cryptographic use
m PRGs that employ the binary expansion of numbers like v/2,

V3, orv5

m Linear congruential generators that take as input a seed
Xp = Sp and three integer parameters a, b, n € N with a,b < n,
and that use the linear recurrence

x; = (axj—1 + b) mod n

to recursively generate an output sequence (x;)i>1
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7. Pseudorandom Generators

7.2 Exemplary Constructions

m It is sometimes argued that a PRG can be built from a
one-way function f by randomly selecting a seed sy and
generating the output sequence

(xi)i>1 = f(s0),f(so+1),f(so+2),f(so+3),...

m The output values need not have good randomness
characteristics

m If, for example, g is a one-way function and f extends g by
appending a 1, i.e., f(x) = g(x)||1, then f is still one-way, but
it outputs values that all end with a 1
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7. Pseudorandom Generators

7.2 Exemplary Constructions

m More involved constructions are required to build a PRG from
a one-way function f
m In each iteration, only a hard-core predicate of f is used (see
below)
m The function f is required to be pseudorandom (see next
chapter)
m Pseudorandomness is an inherently different property than
one-wayness (the construction therefore works for
pseudorandom functions but not for one-way functions)

@®O Rolf Oppliger

Cryptography 101: From Theory to Practice


https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch

Chapter 7 — Pseudorandom Generators
0000000000®0000000000000000000000000

7. Pseudorandom Generators

7.2 Exemplary Constructions

m In the past, people have tried to build PRGs from linear
feedback shift registers (LFSRs)

m Using a single LFSR has turned out to be insufficient

m So people have tried to use multiple LFSRs with irregular
clocking, e.g., A5/1 and A5/2 (GSM), CSS (DVD
encryption), or EO (Bluetooth encryption)

m Most of these LFSR-based PRGs are “insecure”

m More secure variants

m Shrinking generator
m Self-shrinking generator
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7. Pseudorandom Generators

7.2 Exemplary Constructions

m The shrinking generator employs 2 LFSRs A and S to
generate two sequences (a;)i>o and (s;)i>o

m In clock cycle i > 0, the generator outputs a; if and only if
si = 1 (otherwise, a; is discarded)

S |(s)=011011001101..

A |@=101101110100..

Output= 01 01 01 O0..
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7. Pseudorandom Generators

7.2 Exemplary Constructions

m The self-shrinking generator employs only one LFSR A to
generate the sequence (a;j)i>o

m In clock cycle i, the generator outputs apj+1 if and only if
ap; = 1 (otherwise, aj;;1 is discarded)

i=0 i=1 i=2 i=3 i=4 i=5

A (ai)=l1 0‘1 1’0 1‘1 1|0 1‘1 ol...

Output= 0 1 1 0 ..
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7. Pseudorandom Generators

7.2 Exemplary Constructions

m LFSR-based PRGs are not Algorithm 7.1 ANSI X9.17 PRG
so popular anymore, mainly
because they depend on (s0, k, n)
hardware I = Ex(D)

| Most people.prefer software :m ;50: 10 n do
implementations xi = E(l ®s)

m A practically relevant PRG is s=E(xi @)
specified in ANSI X9.17 output X;
(Wlth DES or 3DES) (X17X27"'7X")
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7. Pseudorandom Generators

7.2 Exemplary Constructions

Besides ANSI X9.17, there are several other PRGs used in the
field (e.g., Yarrow, Fortuna, ...)

There are only a few security analyses for these PRGs

In some literature, such they are called practically strong

A practically strong PRG is designed in an ad hoc way but
believed to resist known attacks

m This is different from a cryptographically secure PRG
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m There are several possibilities to formally define the
cryptographical strength (and security) of a PRG

m Historically, the first definition was proposed by Manuel Blum
and Silvio Micali in the early 1980s

m They argued that a PRG is cryptographically secure, if an
adversary — after having seen a sequence of output values —
is not able to predict the next value with a success probability
that is better than guessing (i.e., next-bit test)

m They also proposed a cryptographically secure PRG that is
based on the DLP
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m Shortly after this seminal work, Manuel Blum — together with
Leonore Blum and Michael Shub — proposed the BBS PRG
or squaring generator

m It is cryptographically secure assuming the intractability of the
quadratic residuosity problem (QRP)

m The BBS PRG is still the yardstick for cryptographically
secure PRGs (see below)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m A cryptographically secure PRG is also perfect in the sense
that no PPT algorithm can tell whether an n-bit string has
been sampled uniformly at random from {0,1}" or generated
with the PRG (using a proper seed) with a success probability
that is better than guessing

m This means that a PRG that passes the next-bit test is perfect
in the sense that it passes all polynomial-time (statistical)
tests to distinguish it from a true random generator
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m The (mathematical) tool to argue about this notion of
security is computational indistinguishability

m Formally, a probability ensemble is a family of probability
distributions (or random variables) X = {Xi};c;, where [ is an
index set and each X; is a distinct probability distribution
(sometimes also denoted Py;)

m Typically, I =N, and hence there is an X, for every n € N
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m Let

X ={Xn}nen = {X1, X2, X3, ...}

and

Y = {Yn}neN = {Yl, Y5, Y3, .. }

be two probability ensembles, i.e., for all n € N X,, and Y,
refer to probability distributions on {0,1}"

m t < X, (t + Y,) means that t is sampled according to the
probability distribution X, (Y5)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m X is polytime indistinguishable from Y/, if for every PPT
algorithm A and every polynomial p, there exists a ng € N
such that for all n > ng

PriA(t) =1] — Pr[A(t) =1] < 1

t < Xp t Y ~ p(n)

m This means that for sufficiently large t, no PPT algorithm A
can distinguish whether it is sampled according to X,, or Y,

m In some literature, A is called a polynomial-time statistical
test or distinguisher (sometimes denoted D)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m Using this notion of indistinguishability, pesudorandomness
can be defined precisely

m X = {X,} is pseudorandom if it is polytime indistinguishable
from U = {U,}, i.e., the uniform probability distribution on
{0,1}" for ne N

m This means that for every PPT algorithm A and every
polynomial p, there exists a ng € N such that for all n > ng

t <+ X, t <+ Up

PrA(t) =1] — Pr[A(t) —1]’ (1
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Let G be a PRG with stretch function / : N — N and /(n) > n for
n €N, and {G,} be the distribution defined as the /(n)-bit output
of G on a seed that is sampled uniformly at random from {0,1}"

Definition 7.1 (Cryptographically secure PRG)

G is cryptographically secure if {G,} is pseudorandom, i.e., it is
polytime indistinguishable from {Uj(,)}
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

This means that that for every PPT algorithm A and every
polynomial p, there exists a ng € N such that for all n > ng

PrIA(G(t) =1] — PrlA(t)=1]|_ 1
t <+ Uy t < Uyn) - p(n)

The leftside term stands for the PRG advantage of A with respect
to PRG G, denoted Advprg[A, G]
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m To argue about the security of G, one must be interested in
the PPT algorithm A with maximal PRG advantage

m This yields the PRG advantage of G that is defined as

AdeRc;[G] = mAax{AdeRG [A, G]}
m G is secure, if Advprg[G] is negligible, i.e., for every
polynomial p, there exists a ng € N such that for all n > ng

Advpr[G] < p(l)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

m If f is a one-way function with hard-core predicate B, then the
following PRG G with seed sg is cryptographically secure:

G(s0) = B(f(s0)), B(f3(s0)), - - ., B(f'"(sp))

m Talking in terms of the idealized model of a PRG, the state
register is initialized with sp, the next-state function f is the
one-way function, and the output function g refers to the
hard-core predicate B

m This idea is used in many cryptographically secure PRGs
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Algorithm 7.2 The Blum-Micali PRG Algorithm 7.3 The RSA PRG
(p. &) (n,e)
X0 (L Z; X0 (L Z:
for i =1 to co do for i =1 to oo do
x; = g1 mod p X; = x{_; mod n
bi = msb(x;) bi = Isb(x;)
output b; output b;
(bi)i>1 (bi)i>1
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Algorithm 7.4 The BBS PRG m The BBS PRG has the

(n) practically relevant property
P that x; can be computed

Xo < Zn . . .

for i = 1 to 0o do directly for i > 1 if one
x; = x?_, mod n knows the factorization of n
b,' = /Sb(X,‘) 21. d 1 1
output b; X; = xé ) mod ((p—1)(q—1))

(bi)i>1
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7. Pseudorandom Generators
7.4 Final Remarks

m All PRGs in use today critically assume that their internal
state can be kept secret

m In practice, it may still happen that the adversary can acquire
the internal state

m This may make it necessary to periodically reseed the state

m Some practically strong PRGs take this into account and have
an accumulator that collects and pools entropy from various
sources to periodically reseed the generator
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7. Pseudorandom Generators
7.4 Final Remarks

m There are many applications of PRGs

m If a lot of keying material is required, then they can
complement (rather than replace) true random bit generators

m If a PRG is used to derive keying material from a single
master key or password, then it is called a key derivation
function (KDF) or a mask generation function (MGF)
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7. Pseudorandom Generators
7.4 Final Remarks

m Technically speaking, a KDF (MGF) can be implemented with
a function f (from PRF family F) as follows:

KDF(k,c, ) = fi(c || 0) [| fi(c 1 1) II .- - || fi(c [| n— 1)

m In this notation, c is a context string (acting as “salt”) and /
is the number of bytes that need to be generated

m If b is the output length of f, then n = [//b]
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7. Pseudorandom Generators
7.4 Final Remarks

m The security of this construction requires k to be uniform in IC
m This requirement is crucial and may not always be fulfilled

m For example, if k is the outcome of a key agreement, then k
may be biased or originate from a relatively small subset of 1C

m Some preprocessing may be required here (to extract a
uniform and pseudorandom key from the source key)

m There are standards that serve this purpose, such as KDF1 to
KDF4 and the HMAC-based extract-and-expand key
derivation function (HKDF)
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7. Pseudorandom Generators
7.4 Final Remarks

m Another example where k may not be uniform in K is when a
user selects a password

m User-selected passwords do not provide a lot of entropy

m For this use case, there are special-purpose password-based
key derivation functions (PBKDF), such as PBKDF1 and
PBKDF2

m These functions are typically slowed down artificially (e.g.,
through iteration) to mitigate (offline) password guessing
attacks
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7. Pseudorandom Generators
7.4 Final Remarks

m Another approach to mitigate (offline) password guessing
attacks is to make the PBKDF memory-hard (e.g., scrypt and
Balloon)

m The Password Hashing Competition (PHC) was a privately
initiated competition for a standardized PBKDF that took
place from 2013 to 2015

m The final winner of the PHC was Argon2, but special

recognition was also given to Catena, Lyra2, yescrypt, and
Makwa
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Thank you for your attention
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