
Chapter 7 – Pseudorandom Generators

Cryptography 101: From Theory to Practice

Chapter 7 – Pseudorandom Generators

Rolf Oppliger

February 24, 2022

cbd Rolf Oppliger 1

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

Terms of Use

This work is published with a CC BY-ND 4.0 license (cbd)

CC = Creative Commons (c)
BY = Attribution (b)
ND = No Derivatives (d)

cbd Rolf Oppliger 2

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

whoami

rolf-oppliger.ch

rolf-oppliger.com

Swiss National Cyber Security Centre
NCSC (scientific employee)

eSECURITY Technologies Rolf Oppliger
(founder and owner)

University of Zurich (adjunct professor)

Artech House (author and series editor for
information security and privacy)

cbd Rolf Oppliger 3

Cryptography 101: From Theory to Practice

https://rolf.esecurity.ch
https://rolf.esecurity.ch
https://www.ncsc.admin.ch
https://www.ncsc.admin.ch
https://company.esecurity.ch
https://www.ifi.uzh.ch/en/department/people/affiliated.html
https://us.artechhouse.com
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

Reference Book

https://books.esecurity.ch/crypto101.html

c© Artech House, 2021
ISBN 978-1-63081-846-3

cbd Rolf Oppliger 4

Cryptography 101: From Theory to Practice

https://books.esecurity.ch/crypto101.html
https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

Challenge Me

cbd Rolf Oppliger 5

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

Part II

SECRET KEY CRYPTOSYSTEMS

cbd Rolf Oppliger 6

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

Outline

7. Pseudorandom
Generators

Anyone who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

– John von Neumann

1 Introduction

2 Cryptographic Systems

3 Random Generators

4 Random Functions

5 One-Way Functions

6 Cryptographic Hash Functions

8 Pseudorandom Functions

9 Symmetric Encryption

10 Message Authentication

11 Authenticated Encryption

12 Key Establishment

13 Asymmetric Encryption

14 Digital Signatures

15 Zero-Knowledge Proofs of Knowledge

16 Key Management

17 Summary

18 Outlook

cbd Rolf Oppliger 7

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

7. Pseudorandom Generators

7.1 Introduction

7.2 Exemplary Constructions

7.3 Cryptographically Secure PRGs

7.4 Final Remarks

cbd Rolf Oppliger 8

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

7. Pseudorandom Generators
7.1 Introduction

According to Definition 2.7, a PRG is an efficiently
computable function that takes as input a relatively short
value of length n (i.e., seed) and generates as output a value
of length l(n)� n that appears to be random

L(n) is a stretch function, i.e., a function that stretches an
n-bit value into a longer l(n)-bit value with n < l(n) ≤ ∞
A PRG is a secret key cryptosystem, because the seed can be
seen as a secret key
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7. Pseudorandom Generators
7.1 Introduction

If the input and output values are bit sequences, then the
PRG is a PRBG

Mathematically, a PRBG G is a mapping from key space
K = {0, 1}n to {0, 1}l(n), i.e., G : K −→ {0, 1}l(n), for which
the output appears to be random

A proper definition of “appears to be random” is challenging,
because a PRG operates deterministically

This is in contrast a (true) random generator
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7. Pseudorandom Generators
7.1 Introduction

An idealized model of a
PRG consists of

A state register (of length
n)
A next-state or
state-transition function f
An output function g

State
register

f

g

FSM

s i

si+1

x  , x  , x  , ...1 2 3
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7. Pseudorandom Generators
7.1 Introduction

The state register is initialized with an n-bit seed s0

In each cycle i ≥ 0, the next-state function f computes si+1

from si , i.e., si+1 = f (si ), and si is subject to the output
function g

The result is xi = g(si ), and the bit sequence

(xi )i≥1 = x1, x2, x3, . . .

is the output of the PRG
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7. Pseudorandom Generators
7.1 Introduction

In the model, the function f operates recursively on the state
register, and the seed is the only input value

Some PRGs deviate from this idealized model by allowing the
state register to be reseeded periodically

This may be modeled by having a function f take into
account additional sources of randomness (not illustrated)

In this case, the distinction between a PRG and a true random
generator gets fuzzy
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7. Pseudorandom Generators
7.1 Introduction

In a PRG, the number of states is finite and depends on n,
i.e., the length of the state register

There are at most 2n − 1 possible states

This means that after at most 2n − 1 cycles, the register is in
the same state and the output values start repeating
themselves

The sequence of output values is thus cyclic (with a
potentially very large cycle)

This is why one cannot require that the output of a PRG is
truly random, but only that it appears to be so
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7. Pseudorandom Generators
7.1 Introduction

A minimal security requirement for a PRG is that n is
sufficiently large so that an exhaustive search over all 2n − 1
possible states is computationally infeasible

Also, the output bit sequence must pass all relevant statistical
randomness tests

One must be cautious here, because passing statistical
randomness tests is a necessary but usually not sufficient
requirement for a PRG to be (cryptographically) secure
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7. Pseudorandom Generators
7.1 Introduction

There are PRGs that pass most statistical randomness tests
but are inappropriate for cryptographic use

PRGs that employ the binary expansion of numbers like
√

2,√
3, or

√
5

Linear congruential generators that take as input a seed
x0 = s0 and three integer parameters a, b, n ∈ N with a, b < n,
and that use the linear recurrence

xi = (axi−1 + b) mod n

to recursively generate an output sequence (xi )i≥1

cbd Rolf Oppliger 16

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 7 – Pseudorandom Generators

7. Pseudorandom Generators
7.2 Exemplary Constructions

It is sometimes argued that a PRG can be built from a
one-way function f by randomly selecting a seed s0 and
generating the output sequence

(xi )i≥1 = f (s0), f (s0 + 1), f (s0 + 2), f (s0 + 3), . . .

The output values need not have good randomness
characteristics

If, for example, g is a one-way function and f extends g by
appending a 1, i.e., f (x) = g(x)‖1, then f is still one-way, but
it outputs values that all end with a 1
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7. Pseudorandom Generators
7.2 Exemplary Constructions

More involved constructions are required to build a PRG from
a one-way function f

In each iteration, only a hard-core predicate of f is used (see
below)
The function f is required to be pseudorandom (see next
chapter)

Pseudorandomness is an inherently different property than
one-wayness (the construction therefore works for
pseudorandom functions but not for one-way functions)
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7. Pseudorandom Generators
7.2 Exemplary Constructions

In the past, people have tried to build PRGs from linear
feedback shift registers (LFSRs)

Using a single LFSR has turned out to be insufficient

So people have tried to use multiple LFSRs with irregular
clocking, e.g., A5/1 and A5/2 (GSM), CSS (DVD
encryption), or E0 (Bluetooth encryption)

Most of these LFSR-based PRGs are “insecure”

More secure variants

Shrinking generator
Self-shrinking generator
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7. Pseudorandom Generators
7.2 Exemplary Constructions

The shrinking generator employs 2 LFSRs A and S to
generate two sequences (ai )i≥0 and (si )i≥0

In clock cycle i ≥ 0, the generator outputs ai if and only if
si = 1 (otherwise, ai is discarded)

S

A

(s ) =  0  1  1  0  1  1  0  0  1  1  0  1 ...i

(a ) =  1  0  1  1  0  1  1  1  0  1  0  0 ...i

Output =      0  1      0  1          0  1      0 ...
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7. Pseudorandom Generators
7.2 Exemplary Constructions

The self-shrinking generator employs only one LFSR A to
generate the sequence (ai )i≥0

In clock cycle i , the generator outputs a2i+1 if and only if
a2i = 1 (otherwise, a2i+1 is discarded)

A (a ) =  1  0  1  1  0  1  1  1  0  1  1  0  ...i

Output =      0      1              1              0  ...

i=0 i=1 i=2 i=3 i=4 i=5
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7. Pseudorandom Generators
7.2 Exemplary Constructions

LFSR-based PRGs are not
so popular anymore, mainly
because they depend on
hardware

Most people prefer software
implementations

A practically relevant PRG is
specified in ANSI X9.17
(with DES or 3DES)

Algorithm 7.1 ANSI X9.17 PRG

(s0, k, n)

I = Ek(D)
s = s0
for i = 1 to n do

xi = Ek(I ⊕ s)
s = Ek(xi ⊕ I )
output xi

(x1, x2, . . . , xn)
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7. Pseudorandom Generators
7.2 Exemplary Constructions

Besides ANSI X9.17, there are several other PRGs used in the
field (e.g., Yarrow, Fortuna, . . . )

There are only a few security analyses for these PRGs

In some literature, such they are called practically strong

A practically strong PRG is designed in an ad hoc way but
believed to resist known attacks

This is different from a cryptographically secure PRG
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

There are several possibilities to formally define the
cryptographical strength (and security) of a PRG

Historically, the first definition was proposed by Manuel Blum
and Silvio Micali in the early 1980s

They argued that a PRG is cryptographically secure, if an
adversary — after having seen a sequence of output values —
is not able to predict the next value with a success probability
that is better than guessing (i.e., next-bit test)

They also proposed a cryptographically secure PRG that is
based on the DLP
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Shortly after this seminal work, Manuel Blum – together with
Leonore Blum and Michael Shub – proposed the BBS PRG
or squaring generator

It is cryptographically secure assuming the intractability of the
quadratic residuosity problem (QRP)

The BBS PRG is still the yardstick for cryptographically
secure PRGs (see below)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

A cryptographically secure PRG is also perfect in the sense
that no PPT algorithm can tell whether an n-bit string has
been sampled uniformly at random from {0, 1}n or generated
with the PRG (using a proper seed) with a success probability
that is better than guessing

This means that a PRG that passes the next-bit test is perfect
in the sense that it passes all polynomial-time (statistical)
tests to distinguish it from a true random generator
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

The (mathematical) tool to argue about this notion of
security is computational indistinguishability

Formally, a probability ensemble is a family of probability
distributions (or random variables) X = {Xi}i∈I , where I is an
index set and each Xi is a distinct probability distribution
(sometimes also denoted PXi

)

Typically, I = N, and hence there is an Xn for every n ∈ N
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Let

X = {Xn}n∈N = {X1,X2,X3, . . .}

and

Y = {Yn}n∈N = {Y1,Y2,Y3, . . .}

be two probability ensembles, i.e., for all n ∈ N Xn and Yn

refer to probability distributions on {0, 1}n

t ← Xn (t ← Yn) means that t is sampled according to the
probability distribution Xn (Yn)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

X is polytime indistinguishable from Y , if for every PPT
algorithm A and every polynomial p, there exists a n0 ∈ N
such that for all n > n0∣∣∣∣ Pr[A(t) = 1] − Pr[A(t) = 1]

t ← Xn t ← Yn

∣∣∣∣ ≤ 1

p(n)

This means that for sufficiently large t, no PPT algorithm A
can distinguish whether it is sampled according to Xn or Yn

In some literature, A is called a polynomial-time statistical
test or distinguisher (sometimes denoted D)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Using this notion of indistinguishability, pesudorandomness
can be defined precisely

X = {Xn} is pseudorandom if it is polytime indistinguishable
from U = {Un}, i.e., the uniform probability distribution on
{0, 1}n for n ∈ N
This means that for every PPT algorithm A and every
polynomial p, there exists a n0 ∈ N such that for all n > n0∣∣∣∣ Pr[A(t) = 1] − Pr[A(t) = 1]

t ← Xn t ← Un

∣∣∣∣ ≤ 1

p(n)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Let G be a PRG with stretch function l : N→ N and l(n) > n for
n ∈ N, and {Gn} be the distribution defined as the l(n)-bit output
of G on a seed that is sampled uniformly at random from {0, 1}n

Definition 7.1 (Cryptographically secure PRG)

G is cryptographically secure if {Gn} is pseudorandom, i.e., it is
polytime indistinguishable from {Ul(n)}
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

This means that that for every PPT algorithm A and every
polynomial p, there exists a n0 ∈ N+ such that for all n > n0∣∣∣∣ Pr[A(G (t)) = 1] − Pr[A(t) = 1]

t ← Un t ← Ul(n)

∣∣∣∣ ≤ 1

p(n)

The leftside term stands for the PRG advantage of A with respect
to PRG G , denoted AdvPRG[A,G ]
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

To argue about the security of G , one must be interested in
the PPT algorithm A with maximal PRG advantage

This yields the PRG advantage of G that is defined as

AdvPRG[G ] = max
A
{AdvPRG[A,G ]}

G is secure, if AdvPRG[G ] is negligible, i.e., for every
polynomial p, there exists a n0 ∈ N such that for all n > n0

AdvPRG[G ] ≤ 1

p(n)
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

If f is a one-way function with hard-core predicate B, then the
following PRG G with seed s0 is cryptographically secure:

G (s0) = B(f (s0)),B(f 2(s0)), . . . ,B(f l(n)(s0))

Talking in terms of the idealized model of a PRG, the state
register is initialized with s0, the next-state function f is the
one-way function, and the output function g refers to the
hard-core predicate B

This idea is used in many cryptographically secure PRGs
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Algorithm 7.2 The Blum-Micali PRG

(p, g)

x0
r← Z∗

p

for i = 1 to ∞ do
xi = g xi−1 mod p
bi = msb(xi )
output bi

(bi )i≥1

Algorithm 7.3 The RSA PRG

(n, e)

x0
r← Z∗

n

for i = 1 to ∞ do
xi = xe

i−1 mod n
bi = lsb(xi )
output bi

(bi )i≥1
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7. Pseudorandom Generators
7.3 Cryptographically Secure PRGs

Algorithm 7.4 The BBS PRG

(n)

x0
r← Z∗

n

for i = 1 to ∞ do
xi = x2

i−1 mod n
bi = lsb(xi )
output bi

(bi )i≥1

The BBS PRG has the
practically relevant property
that xi can be computed
directly for i ≥ 1 if one
knows the factorization of n

xi = x
(2i ) mod ((p−1)(q−1))
0
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7. Pseudorandom Generators
7.4 Final Remarks

All PRGs in use today critically assume that their internal
state can be kept secret

In practice, it may still happen that the adversary can acquire
the internal state

This may make it necessary to periodically reseed the state

Some practically strong PRGs take this into account and have
an accumulator that collects and pools entropy from various
sources to periodically reseed the generator
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7. Pseudorandom Generators
7.4 Final Remarks

There are many applications of PRGs

If a lot of keying material is required, then they can
complement (rather than replace) true random bit generators

If a PRG is used to derive keying material from a single
master key or password, then it is called a key derivation
function (KDF) or a mask generation function (MGF)
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7. Pseudorandom Generators
7.4 Final Remarks

Technically speaking, a KDF (MGF) can be implemented with
a function fk (from PRF family F ) as follows:

KDF (k , c , l) = fk(c ‖ 0) ‖ fk(c ‖ 1) ‖ . . . ‖ fk(c ‖ n − 1)

In this notation, c is a context string (acting as “salt”) and l
is the number of bytes that need to be generated

If b is the output length of fk , then n = dl/be
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7. Pseudorandom Generators
7.4 Final Remarks

The security of this construction requires k to be uniform in K
This requirement is crucial and may not always be fulfilled

For example, if k is the outcome of a key agreement, then k
may be biased or originate from a relatively small subset of K
Some preprocessing may be required here (to extract a
uniform and pseudorandom key from the source key)

There are standards that serve this purpose, such as KDF1 to
KDF4 and the HMAC-based extract-and-expand key
derivation function (HKDF)
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7. Pseudorandom Generators
7.4 Final Remarks

Another example where k may not be uniform in K is when a
user selects a password

User-selected passwords do not provide a lot of entropy

For this use case, there are special-purpose password-based
key derivation functions (PBKDF), such as PBKDF1 and
PBKDF2

These functions are typically slowed down artificially (e.g.,
through iteration) to mitigate (offline) password guessing
attacks
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7. Pseudorandom Generators
7.4 Final Remarks

Another approach to mitigate (offline) password guessing
attacks is to make the PBKDF memory-hard (e.g., scrypt and
Balloon)

The Password Hashing Competition (PHC) was a privately
initiated competition for a standardized PBKDF that took
place from 2013 to 2015

The final winner of the PHC was Argon2, but special
recognition was also given to Catena, Lyra2, yescrypt, and
Makwa
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Questions and Answers
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Thank you for your attention
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