Cryptography 101: From Theory to Practice

**Chapter 8 – Pseudorandom Functions** 

Rolf Oppliger

February 24, 2022

### Terms of Use

- This work is published with a CC BY-ND 4.0 license (◎④)
  - CC = Creative Commons (ⓒ)
  - BY = Attribution ()
  - ND = No Derivatives (⑤)

### whoami



rolf-oppliger.ch
rolf-oppliger.com

- Swiss National Cyber Security Centre NCSC (scientific employee)
- eSECURITY Technologies Rolf Oppliger (founder and owner)
- University of Zurich (adjunct professor)
- Artech House (author and series editor for information security and privacy)

### Reference Book



© Artech House, 2021 ISBN 978-1-63081-846-3

https://books.esecurity.ch/crypto101.html

# Challenge Me



### Outline

# 8. Pseudorandom Functions

- 1 Introduction
- 2 Cryptographic Systems
- 3 Random Generators
- 4 Random Functions
- 5 One-Way Functions
- 6 Cryptographic Hash Functions
- 7 Pseudorandom Generators
- 9 Symmetric Encryption
- 10 Message Authentication
- 11 Authenticated Encryption
- 12 Key Establishment
- 13 Asymmetric Encryption
- 14 Digital Signatures
- 15 Zero-Knowledge Proofs of Knowledge
- 16 Key Management
- 17 Summary
- 18 Outlook

- 8.1 Introduction
- 8.2 Security of a PRF
- 8.3 Relationship between PRGs and PRFs
- 8.4 Random Oracle Model
- 8.5 Final Remarks

#### 8.1 Introduction

- According to Definition 2.8, a **PRF** is a family  $F: \mathcal{K} \times X \to Y$  of (efficiently computable) functions, where each  $k \in \mathcal{K}$  determines a function  $f_k: X \to Y$  that is indistinguishable from a random function, i.e., a function randomly chosen from  $\operatorname{Funcs}[X,Y]$
- Because there is one function  $f_k$  for every  $k \in \mathcal{K}$ , there are "only"  $|\mathcal{K}|$  functions in F, whereas there are  $|Y|^{|X|}$  functions in  $\mathrm{Funcs}[X,Y]$
- This means that one can use a small key to determine a particular function  $f_k \in F$ , but the function still behaves like a random function

#### 8.1 Introduction

- Similarly, a **PRP** is a family  $P: \mathcal{K} \times X \to X$  of (efficiently computable) permutations, where each  $p \in \mathcal{K}$  determines a permutation  $p_k: X \to X$  that is indistinguishable from a random permutation, i.e., a permutation randomly chosen from  $\operatorname{Perms}[X]$
- The logic of a PRP is essentially the same (but there are |X|! permutations in  $\operatorname{Perms}[X]$ )
- PRFs and PRPs are omnipresent and heavily used in cryptography



#### 8.2 Security of a PRF

- Intuitively, a PRF is secure if an adversary (i.e., PPT algorithm A) cannot tell it apart from a random function
- Consider the security game, in which A can interact with  $g: X \to Y$  to decide whether it is random (i.e., an element from  $\operatorname{Funcs}[X,Y]$ , meaning that  $g \overset{r}{\leftarrow} \operatorname{Funs}[X,Y]$ ) or pseudorandom (i.e., an element from a PRF family  $F: \mathcal{K} \times X \to Y$ , meaning that  $k \overset{r}{\leftarrow} \mathcal{K}$  and this key fixes a function  $f_k$  from F)

#### 8.2 Security of a PRF

■ The PRF advantage of A with respect to F is defined as

$$Adv_{PRF}[A, F] = \begin{vmatrix} Pr[A(g) = 1] & - & Pr[A(g) = 1] \\ g \leftarrow F & & g \leftarrow Funcs[X, Y] \end{vmatrix}$$

- To argue about the security of PRF *F*, one considers the PPT algorithm *A* with maximal PRF advantage
- The PRF advantage of *F* is defined as

$$Adv_{PRF}[F] = \max_{A} \{Adv_{PRF}[A, F]\}$$

#### 8.2 Security of a PRF

■ PRF F is secure, if  $\mathrm{Adv}_{\mathrm{PRF}}[F]$  is negligible, i.e., for every polynomial p, there exists a  $n_0 \in \mathbb{N}$  such that for all  $n > n_0$ 

$$\mathrm{Adv}_{\mathrm{PRF}}[F] \leq \frac{1}{p(n)}$$

- The bottom line is that for a secure PRF *F*, there is no PPT algorithm that can distinguish an element from *F* from a truly random function
- This means that *F* behaves like a random function and can be used in place of it (mainly in security proofs)

#### 8.3 Relationship between PRGs and PRFs

- PRGs and PRFs are closely related to each other in the sense that one can construct one from the other
- Construct a PRG G from a PRF F:
  - Randomly select a key  $k \in \mathcal{K}$  and iteratively apply  $f_k$  to an incrementing counter

$$G(k) = (f_k(i))_{i \ge 0} = f_k(0), f_k(1), f_k(2), f_k(3), \dots$$

- Note that  $f_k$  is pseudorandom and not "only" one-way
- $\blacksquare$  If F is a secure PRF, then G is a cryptographically secure PRG
- The efficiency of *G* depends on the efficiency of *F*

#### 8.3 Relationship between PRGs and PRFs

- Construct a PRF F from a PRG G:
  - Let G(s) be a PRG for  $s \in \{0,1\}^n$  with stretch function I(n) = 2n
  - $G_0(s)$  refers to the first n bits of G(s), whereas  $G_1(s)$  refers to the last n bits of G(s)
  - $X = Y = \{0,1\}^n$ , and  $x = \sigma_n \cdots \sigma_2 \sigma_1$  is the bitwise representation of x
  - A PRG-based PRF  $F: X \rightarrow Y$  can be defined as

$$f_s(x) = f_s(\sigma_n \cdots \sigma_2 \sigma_1) = G_{\sigma_n}(\cdots G_{\sigma_2}(G_{\sigma_1}(s))\cdots)$$

 The definition is simple, but the construction is not very intuitive (and too inefficient to be used in the field)

#### 8.3 Relationship between PRGs and PRFs

- Toy example
  - For n = 2, one can use a PRG G that is defined as follows:

$$G(00) = 1001$$
  
 $G(01) = 0011$   
 $G(10) = 1110$   
 $G(11) = 0100$ 

- For s = 10 and x = 01 (i.e.,  $\sigma_2 = 0$  and  $\sigma_1 = 1$ ),  $f_s(x) = f_s(\sigma_2\sigma_1) = f_{10}(01) = G_0(G_1(10)) = 11$
- To compute this value, one first computes  $G_1(10) = 10$  (i.e., the last two bits of  $G(10) = 11\underline{10}$ ) and then  $G_0(10) = 11$  (i.e., the first two bits of G(10) = 1110)

#### 8.4 Random Oracle Model

- The random oracle methodology was proposed by Mihir Bellare and Philip Rogaway in the early 1990s
- The goal was to provide "a bridge between cryptographic theory and cryptographic practice"
- The methodology is widely used to design cryptographic systems (mostly protocols)
- The resulting systems are provably secure in the random oracle model (as opposed to the standard model)

#### 8.4 Random Oracle Model

- The random oracle methodology consists of three steps:
  - Design an ideal system in which all parties including the adversary — have access to a random function
  - Formally prove the security of this ideal system
  - Replace the random function with a PRF and provide all parties with a specification of it
- As a result, one obtains an implementation of the ideal system in the real world
- A formal analysis in the random oracle model is not a security proof (because of the ideality assumption), but it provides useful evidence for the security of the system

#### 8.4 Random Oracle Model

- Unfortunately, it has been shown that random oracles cannot be implemented cryptographically
- In particular, it has been shown that an (artificially crafted) DSS exists that is secure in the random oracle model but gets totally insecure when the random oracle is implemented with a (family of) cryptographic hash function(s)
- In theory, the random oracle model is discussed controversially
- In practice, no protocol proven secure in the random oracle model has been broken so far (when used with a standard cryptographic hash function, like SHA-1)

#### 8.5 Final Remarks

- PRFs and PRGs are closely related
- It is possible to construct a PRG if one has a PRF, and vice versa to construct a PRF if one has a PRG
- The respective constructions are conceptually simple and straightforward, but they are purely theoretical and not meant to be used in the field
- In many situations, proving the security in the random oracle model (instead of the standard model) is the best one can do
- The literature is full of such "proofs"

# Questions and Answers



# Thank you for your attention

