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9. Symmetric Encryption
9.1 Introduction

According to Definition 2.9, a symmetric encryption system
(or cipher) is a pair (E ,D) of families of efficiently
computable functions

E : K ×M→ C refers to the family {Ek : k ∈ K} of
encryption functions Ek :M→ C
D : K × C →M refers to the family {Dk : k ∈ K} of
decryption functions Dk : C →M

For every message m ∈M and key k ∈ K, the functions Dk

and Ek must be inverse to each other, i.e., Dk(Ek(m)) = m
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9. Symmetric Encryption
9.1 Introduction
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9. Symmetric Encryption
9.1 Introduction

If M and C are the same, then it usually doesn’t matter
whether one encrypts first and then decrypts or decrypts first
and then encrypts, i.e., Dk(Ek(m)) = Ek(Dk(m)) = m

A system is commutative if a message that is encrypted
multiple times can be decrypted in arbitrary order

For example, if m is encrypted twice with a commutative
encryption system (and keys k1 and k2), i.e.,
c = Ek2(Ek1(m)), then Dk2(Dk1(c)) = Dk1(Dk2(c)) = m
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9. Symmetric Encryption
9.1 Introduction

In order to evaluate a particular (symmetric) encryption
system, one needs well-defined criteria

Shannon’s criteria

Amount of secrecy
Size of key
Complexity of enciphering and deciphering operations
Propagation of errors
Expansion of messages

This list is not comprehensive, and other (or rather
complementary) evaluation criteria may be important in a
particular environment or application setting
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9. Symmetric Encryption
9.1 Introduction

Every practically relevant symmetric encryption system
processes plaintext messages unit by unit

A unit may be either a bit or a block of bits (e.g., one or
several bytes)

The i-th ciphertext unit depends on the i-th plaintext unit, the
key, and possibly some internal state

Consequently, there are two types of ciphers

Block ciphers have no internal state
Stream ciphers have internal state
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9. Symmetric Encryption
9.1 Introduction

Furthermore, there are two subtypes of stream ciphers

In a synchronous (or additive) stream cipher, the next state
does not depend on the previously generated ciphertext units
In a nonsynchronous (or self-synchronizing) stream cipher,
the next state also depends on some (or all) previously
generated ciphertext units

Synchronous (additive) stream ciphers are more widely used in
the field

A synchronous (additive) stream cipher is essentially a PRG
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9. Symmetric Encryption
9.1 Introduction

To argue about the security of a symmetric encryption system
one has to specify

the adversary and the attacks he or she is able to mount
the task he or she is required to solve to be successful

Attacks

Ciphertext-only attack (are always possible)
Known-plaintext attack
(Adaptive) chosen-plaintext attack (CPA / CPA2)
(Adaptive) chosen-ciphertext attack (CCA / CCA2)

In most situations, brute-force or exhaustive key search
attacks are possible
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9. Symmetric Encryption
9.2 Historical Perspective

Every cipher employs one or several alphabet(s) to form the
plaintext message, ciphertext, and key spaces

For example, Σ = {A, . . . ,Z} ∼= Z26 = {0, 1, . . . , 25})
If M = C = K = Z26, then an additive cipher can be defined
as

Ek : M−→ C Dk : C −→M
m 7−→ (m + k) mod 26 c 7−→ (c − k) mod 26

In this setting, the Caesar cipher is an additive cipher with
k = 3
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9. Symmetric Encryption
9.2 Historical Perspective

Similar to the additive cipher, one can define a multiplicative
cipher or combine an additive and a multiplicative cipher in
an affine cipher

In an affine cipher, K consists of all pairs (a, b) ∈ Z2
26 with

gcd(a, 26) = 1 (i.e., |K| = φ(26) · 26 = 312)

An affine cipher can be defined as

E(a,b) : M−→ C D(a,b) : C −→M
m 7−→ (am + b) mod 26 c 7−→ (a−1(c − b)) mod 26

Note that the multiplicative inverse element of a in Z26, i.e.,
a−1 mod 26, is needed to decrypt c
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9. Symmetric Encryption
9.2 Historical Perspective

Σ = {A, . . . ,Z} ∼= Z26 is a good choice for human beings

If computer systems are used for encryption and decryption,
then it is advantageous and more appropriate to use
Σ = Z2 = {0, 1} ∼= F2

The plaintext message and ciphertext spaces are set to
{0, 1}∗, whereas the key space is set to {0, 1}l for a
reasonable key length l

In practice, l is often set to 128 or 256 bits
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9. Symmetric Encryption
9.2 Historical Perspective

Additive, multiplicative, and affine ciphers are
monoalphabetic substitution ciphers

Each letter of the plaintext alphabet is replaced by another
(always the same) letter of the ciphertext alphabet

A monoalphabetic substitution cipher can be thought of a
permutation of the letters that form the (plaintext and
ciphertext) alphabet Σ

For example, there are |Σ|! = 26! > 4 · 1026 permutations of
the 26 letters of the Latin alphabet
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9. Symmetric Encryption
9.2 Historical Perspective

The key space of such a monoalphabetic substitution cipher is
huge (this defeats exhaustive key search)

But a monoalphabetic substitution cipher cannot disguise the
frequency distributions of individual (groups of) letters

It is therefore possible to decrypt a ciphertext using statistical
techniques

An early attempt to defeat frequency analysis attacks was to
disguise plaintext letter frequencies by homophony

In a homophonic substitution cipher, a plaintext letter is
replaced by a ciphertext letter from a group
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9. Symmetric Encryption
9.2 Historical Perspective

Alternatively, a polyalphabetic substitution ciphers can
flatten the frequency distribution of ciphertext letters by using
multiple ciphertext alphabets in a cyclic way

The most important examples are the Vigenère cipher used
in the Middle Ages and the Enigma machine used by the
Germans in World War II

From today’s perspective, all substitution ciphers are insecure
and can be cryptanalyzed

Perfectly or computationally secure ciphers are needed instead
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

The field of perfectly (i.e., information-theoretically) secure
encryption was pioneered by Shannon in the late 1940s

The aim was to come up with an encryption system that is
secure in the sense that it is impossible for an adversary to
derive any information about a plaintext message from a given
ciphertext

This must be true even if the adversary has the best available
computer technology, and even if he or she is not limited in
terms of computational resources (e.g., time and memory)

Such an absolute notion of security exists, but it is usually too
expensive to achieve in practice
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

Shannon’s model of a symmetric encryption system

Source Encrypt

Attacker

Decrypt Destination

Key source

k

cm m
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

In Shannon’s model, let m0,m1 ∈M be plaintext messages
with |m0| = |m1|, and c ∈ C be the encryption of either m0 or
m1

If the encryption is perfectly secure, then the probability that
c is the encryption of m0 must be equal to the probability
that c is the encryption of m1:

Pr[Ek(m0) = c]
k

r← K
=

Pr[Ek(m1) = c]
k

r← K

If this is true for all m0,m1 ∈M, c ∈ C, and k
r← K, then c

can yield no information about the plaintext message
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

Alternatively, an encryption (process) that takes place in a
symmetric encryption system (E ,D) over M, C, and K can
be seen as a discrete random experiment

M and K are then real-valued random variables distributed
according to the probability distributions PM :M→ R+ and
PK : K → R+

Note that PM typically depends on the language in use,
whereas PK is often uniformly distributed over all possible
keys (i.e., all keys are equally probable)

In either case, it is reasonable to assume that M and K are
independent from each other
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

In addition to M and K , there is a third random variable C
distributed according to PC : C → R+

This random variable stands for the ciphertext

The probability distribution PC completely depends on PM

and PK

The random variable C is the one that can be observed by the
(passive) adversary and from which he or she may try to
derive information about M or K
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

If the two random variables M and C are independent from
each other, then C yields no information about M

This suggests that the a priori probability distribution PM and
the a posteriori probability distribution PM|C must be equal
(for an encryption to be perfectly secure)

Definition 9.1 (Perfectly secure symmetric encryption system)

A symmetric encryption system (E ,D) over M, C, and K is
perfectly secure if PM = PM|C
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

Alternatively, the notion of perfect security (secrecy) can be
defined information-theoretically using the notion of entropy

Definition 9.2 (Perfectly secure symmetric encryption system)

A symmetric encryption system (E ,D) over M, C, and K is
perfectly secure if H(M|C ) = H(M) for every probability
distribution PM

cbd Rolf Oppliger 27

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 9 – Symmetric Encryption

9. Symmetric Encryption
9.3 Perfectly Secure Encryption

Shannon showed for (nonrandomized) symmetric encryption
systems that a necessary but usually not sufficient condition
for such a system to be perfectly secure is that the entropy of
K is at least as large as the entropy of M

This implies that the secret key must be at least as long as
the plaintext

Theorem (Shannon)

In a perfectly secure symmetric encryption system H(K ) ≥ H(M)
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

The prime example of a perfectly secure cipher is the
one-time pad (OTP) credited to Gilbert S. Vernam (aka
Vernam cipher)

It consists of a randomly generated stream of key bits
k = k1, k2, k3, . . . shared between the sender and the recipient

To encrypt plaintext message m = m1,m2, . . . ,mn, the sender
adds each bit mi (1 ≤ i ≤ n) modulo 2 with ki :

ci = mi ⊕ ki for i = 1, . . . , n

The ciphertext c = c1, c2, c3, . . . , cn is sent to the recipient
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

The recipient can recover the plaintext by adding each
ciphertext bit ci modulo 2 with the respective key bit ki :

ci ⊕ ki = (mi ⊕ ki )⊕ ki = mi ⊕ (ki ⊕ ki ) = mi ⊕ 0 = mi

Theorem (One-time pad)

The one-time pad provides perfect secrecy

The proof only applies if the key is truly random and used only
once
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9. Symmetric Encryption
9.3 Perfectly Secure Encryption

The OTP provides perfect security in terms of secrecy, but it
neither provides integrity nor authenticity

It is possible to modify a known ciphertext so that it has a
well-defined effect on the underlying plaintext message

This means that the one-time pad is highly malleable

There are situations in which malleability is a desired property
(e.g., plausible deniability)

In most situations, however, nonmalleability is the desired
property and the primary design goal
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9. Symmetric Encryption
9.4 Computationally Secure Encryption

In a perfectly secure encryption system, no information about
a plaintext message leaks from a ciphertext

In a computationally secure encryption system, one only
requires that the amount of information that may leak and
can therefore be extracted is negligible

This leads to the notion of semantic security

An encryption system is semantically secure if it is
computationally infeasible to derive significant information
about a plaintext message from a ciphertext
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9. Symmetric Encryption
9.4 Computationally Secure Encryption

It is generally difficult to prove semantic security

But it is equivalent to ciphertext indistinguishability under
a CPA (IND-CPA)

This notion of security can be explained and formally defined
in the security or (in)distinguishability game

A symmetric encryption system is computationally secure, if it
is semantically secure and hence provides IND-CPA

cbd Rolf Oppliger 33

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 9 – Symmetric Encryption

9. Symmetric Encryption
9.4 Computationally Secure Encryption

Let (E ,D) over M, C, and K be a symmetric encryption
system for which IND-CPA needs to be shown

The adversary chooses a pair of equally long plaintext
messages m0 and m1 and sends them to the challenger
The challenger randomly selects a key k ∈R K and a bit
b ∈R {0, 1}, and sends c = Ek(mb) to the adversary
After q such queries, the adversary has to choose and output
b′ that is 0 (if c is the encryption of m0) or 1 (if c is the
encryption of m1)

The adversary is successful if the probability that b′ = b is
significantly better than guessing, i.e., Pr[b′ = b] = 1

2 + ε for
some nonnegligible ε
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9. Symmetric Encryption
9.5 Stream Ciphers

Stream ciphers have played and continue to play an important
role in (the history of) cryptography

The i-th ciphertext unit thus depends on the i-th plaintext
unit, the key, and some internal state

There are synchronous (additive) and nonsynchronous
(self-synchronizing) stream ciphers

Most stream ciphers in use today are synchronous (additive)
and conceptually similar to the OTP (“pseudo OTP”)
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9. Symmetric Encryption
9.5 Stream Ciphers

Let Σ = Z2 = {0, 1}, M = C = Σ∗, and K = Σn for key
length n

To encrypt l-bit plaintext message m = m1, . . . ,ml ∈M
using an additive stream cipher, an n-bit key k ∈ K must be
expanded into a stream of l key bits k1, . . . , kl

Encryption function:

Ek(m) = m1 ⊕ k1, . . . ,ml ⊕ kl = c1, . . . , cl

Decryption function:

Dk(c) = c1 ⊕ k1, . . . , cl ⊕ kl = m1, . . . ,ml
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9. Symmetric Encryption
9.5 Stream Ciphers

The main question in the design of an additive stream cipher
is how to expand k ∈ K into a potentially infinite key stream
(ki )i≥1

Many designs are based on linear feedback shift registers
(LFSRs)

In addition to these LFSR-based stream ciphers, there are
other stream ciphers (i.e., not based on LFSRs)

Examples include RC4, Salsa20, and ChaCha (see below)
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

A feedback shift register (FSR) of length L comprises:

L storage elements (stages), each capable of storing one bit
and having one input and one output
A clock that controls the movement of data (between the
stages) in the FSR

The stages are initialized with bits s0, s1, . . . , sL−1

This refers to the initial state of the FSR
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

In each clock cycle, the following operations are performed:

The content of stage 0 (i.e., s0) provides the output
The content of stage i (i.e., si ) is moved to stage i − 1 for
1 ≤ i ≤ L− 1
The new content of stage L− 1 is the feedback bit sj that is
computed as sj = f (s0, s1, . . . , sL−1) for some function f
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

Such an FSR may generate a sequence of (pseudorandom)
output values

Because the length of the FSR (and the number of stages) is
finite, the FSR represents a finite state machine (FSM)

If the register has length L and there are q possible stage
values, then the FSR represents an FSM with qL possible
states (and a maximal period of qL − 1)

If q = 2, then there are 2L possible states (and a maximal
period of 2L − 1)
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

If f is the modulo 2 sum of the contents of some stages, the
FSR yields a linear FSR (LFSR)

If the closed semicircles represent AND gates and each ci
(0 ≤ i ≤ L− 1) one bit, then sj is the modulo 2 sum of the
contents of the stages 0 ≤ i ≤ L− 1 for which ci = 1
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

An LFSR of length L can be specified as 〈L, c(X )〉, where

c(X ) = c0 + c1X + c2X
2 + . . .+ cL−1X

L−1 + X L

stands for the connection polynomial (that is an element of
F2[X ])

The degree of c(X ) is L, meaning that cL = 1.
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

If s(t=0) = (s0, s1, . . . , sL−1) is the initial state of a LFSR with
connection polynomial c(X ), then the output sequence
sL, sL+1, sL+2, . . . can be generated as

sL+t =
L−1∑
i=0

ci si+t = c0si+t + c1si+t+1 + . . .+ cL−1si+t+L−1

for t ≥ 0

The sequence may be infinite, but is cyclic after at most
2L − 1 steps
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

An LFSR of length L has an output sequence with maximum
possible period 2L − 1, iff its connection polynomial c(X ) has
degree L and is primitive (and hence irreducible)

Because LFSRs are well understood in theory and can be
implemented very efficiently in hardware, several stream
ciphers employ a single LFSR

Such ciphers are susceptible to known-plaintext attacks (only
2L plaintext-ciphertext pairs are required)

A stream cipher should therefore not directly use the output
of a single LFSR
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9. Symmetric Encryption
9.5 Stream Ciphers — LFSR-based stream ciphers

People have proposed several constructions to more securely
use LFSRs in the design of a stream cipher

Examples include the shrinking (or self-shrinking) generator,
or — more generally — the use of multiple LFSRs with
irregular clocking, such as A5/1 (3 LFSRs), CSS (2 LFSRs),
and E0 (4 LFSRs)

All LFSR-based stream ciphers of the second type have been
broken or have serious vulnerabilities and should no longer be
used
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9. Symmetric Encryption
9.5 Stream Ciphers

LFSR-based stream ciphers can be implemented efficiently in
hardware, but they are not well suited to be implemented in
software

Consequently, there is room for other — preferably additive
— stream ciphers optimized for software implementations

In addition to RC4, Salsa20, and ChaCha, some additional
stream ciphers resulted from the eSTREAM project (2004 –
2008)

Examples include HC-128, Rabbit, SOSEMANUK, Grain,
MICKEY, and Trivium (not addressed here)
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9. Symmetric Encryption
9.5 Stream Ciphers — RC4

RC4 is an additive stream cipher originally developed and
proposed by Ron Rivest in 1987

The design was originally kept as a trade secret of RSA
Security

In 1994, the source code of an RC4 implementation was
anonymously posted to the Cypherpunks mailing list

This algorithm is called ARC4 or ARCFOUR

The correctness of ARC4/ARCFOUR was later confirmed by
comparing its outputs to those of some licensed RC4
implementations
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9. Symmetric Encryption
9.5 Stream Ciphers — RC4

RC4 takes a variable-length key k that may range from 1 to
256 bytes (denoted k[0], . . . , k[255]), and it employs a
256-bytes array S of state information (S-box)

Algorithm 9.1 The S-box initialization algorithm of RC4.

(k)

j = 0
for i = 0 to 255 do S [i ] = i
for i = 0 to 255 do

j = (j + S [i ] + k[i mod |k|]) mod 256
S [i ]←→ S [j ]

(S)
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9. Symmetric Encryption
9.5 Stream Ciphers — RC4

After the S-box initialization, i and j are set to 0

RC4 then operates as a PRG to encrypt individual bytes with
output byte k (by addition modulo 2)

Algorithm 9.2 The RC4 PRG algorithm.

(S)

i = (i + 1) mod 256
j = (j + S [i ]) mod 256
S [i ]←→ S [j ]
k = S [(S [i ] + S [j ]) mod 256]

(S , k)
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9. Symmetric Encryption
9.5 Stream Ciphers — RC4

RC4 had been used for a very long time, until some
weaknesses and statistical defects were found

Most importantly, the key stream generated by RC4 is biased

For example, the probability that the second byte being
generated is equal to zero is 2/256 = 1/128 (instead of
1/256), and the probability that a double zero byte is
generated is 1/(256)2 + 1/(256)3 (instead of 1/(256)2)

Biases like these have been exploited in many attacks (e.g.,
RC4 NOMORE)
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9. Symmetric Encryption
9.5 Stream Ciphers — RC4

RC4 is no longer recommended in most application settings
(e.g., RFC 7465 prohibits RC4 for use in SSL/TLS)

There are a few variants of RC4

RC4+

RC4A
VMPC (Variably Modified Permutation Composition)
Spritz
. . .

But none of these variants is widely deployed in the field
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Salsa20 was originally proposed by Dan Bernstein in 2005 (as
a submission to the eSTREAM project)

Like RC4, it is an additive stream cipher

Unlike RC4, it uses nonces (it is therefore less important to
periodically refresh the key)

There are no published attacks against Salsa20/20 and
Salsa20/12

The best-known attack targets Salsa20/8 (more theoretical
than practical)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Salsa20 operates on 64-byte (or 512-bit) blocks of data,
meaning that a plaintext or ciphertext unit is 64 bytes long

Encryption function:

c = Ek(m, n) = Salsa20encryptk (m, n) = m ⊕ Salsa20expandk (n)

Salsa20expand and Salsa20encrypt are keyed with k (typically 32
bytes long) and employ a 16-byte nonce n (of which 8 bytes
refer to a counter)

Furthermore, there is a Salsa20 hash function that takes a
64-byte input value x and hashes it to a 64-byte output value
Salsa20(x)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

The Salsa20 hash function is word-oriented, meaning that it
operates on words (i.e., 4 bytes or 32 bits)

Basic operations on words

The addition modulo 232 of words w1 and w2, denoted as
w1 + w2

The addition modulo 2 (XOR) of words w1 and w2, denoted as
w1 ⊕ w2

The c-bit left rotation of word w , denoted as w
y←↩ c for some

integer c ≥ 0
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

The Salsa20 hash function employs
several auxiliary functions
The quarterround function operates on
4-word values y = (y0, y1, y2, y3) and is
defined as quarterround(y) =
z = (z0, z1, z2, z3), where

z1 = y1 ⊕ ((y0 + y3)
y
←↩ 7)

z2 = y2 ⊕ ((z1 + y0)
y
←↩ 9)

z3 = y3 ⊕ ((z2 + z1)
y
←↩ 13)

z0 = y0 ⊕ ((z3 + z2)
y
←↩ 18)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

If y is a 16-word input value (y0, y1, y2, . . . , y15) that can be
written as a square matrix

y0 y1 y2 y3
y4 y5 y6 y7
y8 y9 y10 y11
y12 y13 y14 y15


then the rowround function generates a 16-word output value
z = rowround(y) = (z0, z1, z2, . . . , z15), where

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3)

(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4)

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9)

(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Similarly, the columnround function takes a 16-word input
value y = (y0, y1, y2, . . . , y15) and generates a 16-word output
value z = columnround(y) = (z0, z1, z2, . . . , z15), where

(z0, z4, z8, z12) = quarterround(y0, y4, y8, y12)

(z5, z9, z13, z1) = quarterround(y5, y9, y13, y1)

(z10, z14, z2, z6) = quarterround(y10, y14, y2, y6)

(z15, z3, z7, z11) = quarterround(y15, y3, y7, y11)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

The rowround and columnround functions are combined in a
doubleround function
If y = (y0, y1, y2, . . . , y15) is a 16-word input value, then

z = (z0, z1, z2, . . . , z15)

= doubleround(y)

= rowround(columnround(y))

is the respective 16-word output value
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

The littleendian function encodes a word or 4-byte sequence
b = (b0, b1, b2, b3) in little-endian order (b3, b2, b1, b0) that
represents the value b3 · 224 + b2 · 216 + b1 · 28 + b0 (typically
written in hexadecimal notation)

For example, littleendian(86, 75, 30, 9) = (9, 30, 75, 86)
represents 9 · 224 + 30 · 216 + 75 · 28 + 86 and can be written
as 0x091E4B56

The littlendian function has an inverse function, so
littleendian−1(0x091E4B56) = (86, 75, 30, 9)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

The Salsa20 hash function takes a 64-byte input value
x = (x [0], x [1], . . . , x [63]) that refers to 16 words

x0 = littlendian(x[0], x[1], x[2], x[3])

x1 = littlendian(x[4], x[5], x[6], x[7])

. . .

x15 = littlendian(x[60], x[61], x[62], x[63])

It then computes

z = (z0, z1, z2, . . . , z15) = doubleround10(x0, x1, . . . , x15)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Finally, the output of Salsa20(x) is the concatenation of the
16 words that are generated as follows:

littlendian−1(z0 + x0)

littlendian−1(z1 + x1)

. . .

littlendian−1(z15 + x15)

The 20 rounds of Salsa20 come from the fact that the
doubleround function is iterated 10 times, and each iteration
represents two rounds (one for the columnround function and
one for the rowround function)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

As its name suggests, the aim of the Salsa20 expansion
function is to expand a 16-byte input n into a 64-byte output

It therefore uses 32 or 16 bytes of keying material and 16
constant bytes (4 constant words)

Depending on whether the keying material consists of 32 or
16 bytes, the constant words and the respective expansion
functions are different
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Case 1: If the keying material consists of 32 bytes, then this
material is split into two halves that represent two 16-bytes
keys k0 and k1
In this case, the constant words are as follows

σ0 = (101, 120, 112, 97) = 0x61707865

σ1 = (110, 100, 32, 51) = 0x3320646E

σ2 = (50, 45, 98, 121) = 0x79622D32

σ3 = (116, 101, 32, 107) = 0x6B206574
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

The Salsa20 expansion function is then defined as

Salsa20k0,k1(n) = Salsa20(σ0, k0, σ1, n, σ2, k1, σ3)

Note that littleendian(σ0) = littleendian(101, 120, 112, 97) =
0x61707865, so the argument that is subject to the Salsa20
hash function always starts with the four bytes 0x61, 0x70,
0x78, and 0x65
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Case 2: If the keying material consists of 16 bytes, then this
material represents a single 16-byte key k that is applied twice
In this case, a slightly different set of 4-byte τ constants is
used (the two different bytes are underlined)

τ0 = (101, 120, 112, 97)

τ1 = (110, 100, 32, 49)

τ2 = (54, 45, 98, 121)

τ3 = (116, 101, 32, 107)

The Salsa20 expansion function is then defined as

Salsa20k(n) = Salsa20(τ0, k, τ1, n, τ2, k , τ3)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

σ and τ can be seen as constants c , k is the key, and n is the
argument of the Salsa20 expansion function
The input can be written in a specific matrix layout

c k k k
k c n n
n n c k
k k k c


This layout is somewhat arbitrary and can be changed at will
(e.g., ChaCha uses a different layout)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Salsa20 is an additive stream cipher, meaning that an
appropriately sized key stream is generated and added modulo
2 to the plaintext message

The Salsa20 expansion function is used to generate the key
stream

Let k be a 32- or 16-byte key, n an 8-byte nonce, and m an
l-byte plaintext message (where 0 ≤ l ≤ 270)

The Salsa20 encryption of m with nonce n under key k ,
denoted as Salsa20k(m, n), is computed as m ⊕ Salsa20k(n′),
where Salsa20k(n′) represents the key stream and n′ is derived
from n by adding an 8-byte counter
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

More specifically, the key stream is constructed as

Salsa20k(n ‖ 0) ‖ Salsa20k(n ‖ 1) ‖ . . . ‖ Salsa20k(n ‖ 264 − 1)

The Salsa20 encryption function can be expressed as

c = (c[0], c[1], . . . , c[l − 1])

= (m[0],m[1], . . . ,m[l − 1])⊕ Salsa20k(n′)
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9. Symmetric Encryption
9.5 Stream Ciphers — Salsa20

Since Salsa20 is an additive stream cipher, the encryption and
decryption functions are the same

Because the length of a nonce is controversially discussed in
the community, Bernstein proposed a variant of Salsa20 that
can handle longer nonces

More specifically, XSalsa20 can take nonces that are 192 bits
long (instead of only 64 bits)

The XSalsa20 encryption and decryption algorithms are
slightly different, but the security level is provably the same
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9. Symmetric Encryption
9.5 Stream Ciphers — ChaCha

In 2008, Bernstein proposed a modified version of the Salsa20
stream cipher named ChaCha

Again, the term refers to a family of stream ciphers that
comprises ChaCha20 (20 rounds), ChaCha12 (12 rounds), and
ChaCha8 (8 rounds)

ChaCha is structurally identical to Salsa20, but it uses a
different round function and a different matrix layout

Furthermore, it uses a key that is always 32 bytes (256 bits)
long, a nonce that is 12 bytes (96 bits) long, and a block
counter that is only 4 bytes (32 bits) long
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9. Symmetric Encryption
9.5 Stream Ciphers — ChaCha

Instead of using y = (y0, y1, y2, y3) and z = (z0, z1, z2, z3),
ChaCha uses four 32-bit words a, b, c, and d
This means that

z1 = y1 ⊕ ((y0 + y3)
y
←↩ 7)

z2 = y2 ⊕ ((z1 + y0)
y
←↩ 9)

z3 = y3 ⊕ ((z2 + z1)
y
←↩ 13)

z0 = y0 ⊕ ((z3 + z2)
y
←↩ 18)

is written as

b = b ⊕ ((a+ d)
y
←↩ 7)

c = c ⊕ ((b + a)
y
←↩ 9)

d = d ⊕ ((c + b)
y
←↩ 13)

a = a⊕ ((d + c)
y
←↩ 18)
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9. Symmetric Encryption
9.5 Stream Ciphers — ChaCha

The operations performed by ChaCha are the same as the
ones performed by Salsa20, but they are applied in a different
order and each word is updated twice (instead of just once)

The advantage is that the ChaCha round function provides
more diffusion than the Salsa20 round function

Also, the rotation distances are changed from 7, 9, 13, and 18
to 16, 12, 8, and 7 (but this difference is less important)
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9. Symmetric Encryption
9.5 Stream Ciphers — ChaCha

The ChaCha quarterround function
updates a, b, c , and d as follows:

a = a + b; d = d ⊕ a; d = d
y←↩ 16;

c = c + d ; b = b ⊕ c ; b = b
y←↩ 12;

a = a + b; d = d ⊕ a; d = d
y←↩ 8;

c = c + d ; b = b ⊕ c ; b = b
y←↩ 7;
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9. Symmetric Encryption
9.5 Stream Ciphers — ChaCha

Using the quarterround
function, ChaCha combines
columnround and
“diagonalround” (no
rowround) in every round

Algorithm 9.3 The ChaCha20 PRG

(k, i, n)

S = σ ‖ k ‖ i ‖ n
S′ = S
for i = 1 to 10 do begin

quarterround(S′
0, S

′
4, S

′
8, S

′
12)

quarterround(S′
1, S

′
5, S

′
9, S

′
13)

quarterround(S′
2, S

′
6, S

′
10, S

′
14)

quarterround(S′
3, S

′
7, S

′
11, S

′
15)

quarterround(S′
0, S

′
5, S

′
10, S

′
15)

quarterround(S′
1, S

′
6, S

′
11, S

′
12)

quarterround(S′
2, S

′
7, S

′
8, S

′
13)

quarterround(S′
3, S

′
4, S

′
9, S

′
14)

end
S = S + S′

Serialized(S)
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9. Symmetric Encryption
9.5 Stream Ciphers — ChaCha

Initialization parameters

Four 4-byte constants σ0, σ1, σ2,
and σ3 (the same as Salsa20)
32-byte key k
4-byte counter i
12-byte nonce n

Matrix layout of S
c c c c
k k k k
k k k k
n n n n


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9. Symmetric Encryption
9.5 Stream Ciphers — ChaCha

Similar to Salsa20, no practically relevant cryptanalytical
attack against ChaCha (ChaCha20) is known to exist

ChaCha20 is widely used on the Internet (mainly as a
replacement for RC4)

Most importantly, it is often combined with Bernstein’s
Poly1305 message authentication code to provide
authenticated encryption

cbd Rolf Oppliger 76

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 9 – Symmetric Encryption

9. Symmetric Encryption
9.6 Block Ciphers

Every practical symmetric encryption system processes
plaintext messages unit by unit

In the case of a block cipher such a unit is called “block”

Consequently, a block cipher maps plaintext message blocks
of a specific length into ciphertext blocks of typically the same
length

M = C = Σn for some alphabet Σ and block length n

In a typical setting, n is 128 or 256 bits
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9. Symmetric Encryption
9.6 Block Ciphers

A permutation on set S is a bijective function f : S → S

If one fixes a block length n and works with M = C = Σn,
then any element π randomly selected from Perms[Σn] defines
a block cipher

The encryption and decryption functions (Eπ and Dπ) can be
defined as follows:

Eπ : Σn −→ Σn Dπ : Σn −→ Σn

w 7−→ π(w) w 7−→ π−1(w)

There are |P(Σn)| = (Σn)! elements in Perms[Σn]
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9. Symmetric Encryption
9.6 Block Ciphers

There are (2n)! possible permutations in Perms[{0, 1}n] (i.e.,
Σ = {0, 1})
For a typical block length n of 64 bits, there are

264! = 18, 446, 744, 073, 709, 551, 616!

possible permutation

This number requires > 269 bits to encode it

Block ciphers are usually designed to take a reasonably long
key and still generate a permutation that looks random
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9. Symmetric Encryption
9.6 Block Ciphers

This means that one uses only some possible permutations of
Σn (from Perms[Σn]) as encryption and decryption functions
and comparably short keys to refer to them

Hence, a block cipher is a PRP that uses a key k from a
moderately sized key space K to define a family of bijective
encryption functions Ek : Σn → Σn and a family of respective
decryption functions Dk : Σn → Σn

To analyze the security of such a block cipher, one has to
study the algebraic properties of the PRP
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9. Symmetric Encryption
9.6 Block Ciphers

The design of a block cipher combines permutations and
substitutions to generate confusion and diffusion

Confusion is to make the relation between the key and the
ciphertext as complex as possible
Diffusion is to spread the influence of a single plaintext bit
over many ciphertext bits

Block ciphers that combine permutations and substitutions in
multiple rounds are called substitution-permutation ciphers

The Data Encryption Standard (DES) is the prime example
of such a substitution-permutation cipher
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9. Symmetric Encryption
9.6 Block Ciphers — DES

In the early 1970s, the U.S. National Bureau of Standards
(NBS) set up a competition for a standardized block cipher

IBM submitted a block cipher called Lucifer

NBS, NSA, and IBM refined the design of Lucifer and finally
standardized the result as DES in FIPS PUB 46 (1977).

The standard was reaffirmed by NIST in 1983, 1988, 1993,
and 1999, before it was officially withdrawn in July 2004

The Triple Data Encryption Algorithm (TDEA) or 3DES is
still used in situations that can handle moderate performance

cbd Rolf Oppliger 82

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 9 – Symmetric Encryption

9. Symmetric Encryption
9.6 Block Ciphers — DES

DES is a substitution-permutation cipher, but it is also a
Feistel cipher

A Feistel cipher is a block cipher with a characteristic
structure (aka Feistel network)

The alphabet is Σ = Z2 = {0, 1} and the block length is 2t
for a reasonably sized t ∈ N+

The Feistel cipher runs in 0 < r ∈ N rounds, where r round
keys k1, . . . , kr are derived from k ∈ K and used on a
per-round basis
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9. Symmetric Encryption
9.6 Block Ciphers — DES

The encryption function Ek starts by splitting the plaintext
message block m into two halves of t bits each

Let L0 be the left half and R0 the right half of m, i.e.,
m = L0 ‖ R0 = (L0,R0)

For i = 1, . . . , r , a sequence of pairs (Li ,Ri ) is recursively
computed as

(Li ,Ri ) = (Ri−1, Li−1 ⊕ fki (Ri−1))

This means that Li = Ri−1 and Ri = Li−1 ⊕ fki (Ri−1)

cbd Rolf Oppliger 84

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 9 – Symmetric Encryption

9. Symmetric Encryption
9.6 Block Ciphers — DES

The pair (Lr ,Rr ) in reverse order then represents the
ciphertext block c

Ek(m) = Ek(L0,R0) = (Rr , Lr ) = c

The recursive formula from above can be written as

(Li−1,Ri−1) = (Ri ⊕ fki (Li ), Li )

It is thus possible to recursively compute Li−1 and Ri−1 from
Li , Ri , and ki , and to determine (L0,R0) from (Rr , Lr ) using
the round keys in reverse order (i.e., kr , . . . , k1)
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9. Symmetric Encryption
9.6 Block Ciphers — DES

DES is a Feistel network with t = 32 and r = 16

This means that the block length is 64 bits, and hence
M = C = {0, 1}64, and that the DES encryption and
decryption algorithms operate in 16 rounds
Furthermore, DES keys are 64-bit strings, where the last bit of
each byte is set to have odd parity

K = {(k1, . . . , k64) ∈ {0, 1}64 |
8∑

i=1

k8j+i ≡ 1 (mod 2) for j = 0, . . . , 7}
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9.6 Block Ciphers — DES
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32 bit 48 bit
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6 bit
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4 bit
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f  (R)k

32 bit
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Algorithm 9.4 The DES
encryption algorithm

(m, k)

m = IP(m)
L0 = m|32
R0 = m|32
for i = 1 to 16 do

Li = Ri−1

Ri = Li−1 ⊕ fki (Ri−1)
c = IP−1(R16, L16)

(c)
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9. Symmetric Encryption
9.6 Block Ciphers — DES

Since its standardization, the DES has been subject to a lot of
public scrutiny
People have found 4 weak keys and 12 semiweak keys

A DES key k is weak if DESk(DESk(m)) = m for all
m ∈M = {0, 1}64
The DES keys k1 and k2 are semiweak if
DESk1(DESk2(m)) = m for all m ∈M = {0, 1}64

Weak and semiweak DES keys should not be used in practice

Since there are only 16 = 24 such keys, the probability of
randomly generating one is very small

24

256
= 2−52 ≈ 2.22 · 10−16
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9. Symmetric Encryption
9.6 Block Ciphers — DES

Several cryptanalytical attacks have been developed in an
attempt to break DES

The following attacks were published in the early 1990s

Differential cryptanalysis represents a CPA that requires 247

chosen plaintexts
Linear cryptanalysis represents a known-plaintext attack that
requires 243 known plaintexts

All newly proposed block ciphers are routinely shown to be
resistant against differential and linear cryptanalysis
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9. Symmetric Encryption
9.6 Block Ciphers — DES

From a practical viewpoint, the major vulnerability and
security problem of DES is its relatively small key length (and
key space)

Note that a DES key is effectively 56 bits long, and hence the
key space comprises 256 = 72, 057, 594, 037, 927, 936 elements

Consequently, a key search is successful after 256 trials in the
worst case and 256/2 = 255 trials on the average

Due to the complementation property, 254 trials are sufficient
on average
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9. Symmetric Encryption
9.6 Block Ciphers — DES

The feasibility of an exhaustive key search was first publicly
discussed by Diffie and Hellman in 1977

They estimated that a brute-force machine that could find a
DES key within a day would cost 20 million USD (with a lot
of room for time-memory trade-offs)

Michael J. Wiener later proposed the design of several
dedicated machines to find DES keys

In 1998, the Electronic Frontier Foundation (EFF) built a
DES search machine named Deep Crack

More recently, a massively parallel machine called
COPACOBANA was built for 10,000 USD
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9. Symmetric Encryption
9.6 Block Ciphers — DES

DESX is a modified version of DES that compensates for its
relatively small key length

It employs a technique called key whitening

DESX is practically relevant and employed by the Encrypted
File System (EFS) in Microsoft Windows

DES+ +m c

k kk1 2
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9. Symmetric Encryption
9.6 Block Ciphers — DES

Another possibility to address (or solve) the small key length
problem is to iterate DES multiple times

Important remarks

Multiple iterations with the same key are pointless (i.e.,
different keys are needed)
The DES encryption functions are not closed with regard to
concatenation (i.e., they do not form a group)

The first (meaningful) possibility to iterate the DES is double
encryption with independent keys

This is susceptible to a meet-in-the-middle attack
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9. Symmetric Encryption
9.6 Block Ciphers — DES

DESm

k , ... ,k

1
DES

Table 1 Table 21 2
56

c1

k , ... ,k1 2
56

c i k i

m j k j
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9. Symmetric Encryption
9.6 Block Ciphers — DES

Due to the meet-in-the-middle attack, one usually iterates
DES three times (Triple DES or 3DES)

FIPS PUB 46-3 specifies the TDEA, and this specification
also conforms to ANSI X9.52

A TDEA key consists of three keys that are collectively
referred to as a key bundle, i.e., k = (k1, k2, k3)

TDEA encryption function:

c = Ek3(Dk2(Ek1(m)))

Consequently, a TDEA or 3DES encryption is also referred to
as EDE (encrypt-decrypt-encrypt)
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9. Symmetric Encryption
9.6 Block Ciphers — AES

Between 1997 and 2000, NIST carried out a competition to
standardize a successor for the DES, called the AES

Many parties from industry and academia participated in the
competition

15 submissions qualified as AES candidates

NIST selected 5 finalists

MARS
RC6
Rijndael
Serpent
Twofish
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9. Symmetric Encryption
9.6 Block Ciphers — AES

In October 2000, NIST decided that Rijndael would become
the AES (FIPS PUB 197)

It was selected mainly because of its ease of implementation
in hardware and its strong performance on nearly all platforms

According to the requirements, the AES is a block cipher with
a block length of 128 bits and a variable key length of 128
(AES-128), 192 (AES-192), or 256 bits (AES-256)

The number of rounds depends on the key length (i.e., 10, 12,
or 14 rounds)
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9. Symmetric Encryption
9.6 Block Ciphers — AES

The AES is byte oriented

Each byte represents an element of F28 (or GF (28)) and can
be written in binary or hexadecimal notation
Alternatively, the 8 bits of a byte can also be seen and written
as the coefficients of a polynomial of degree 7:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x + b0 =
7∑

i=0

bix
i

For example, the byte {10100011} = 0xA3 can be written as
polynomial x7 + x5 + x + 1
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9. Symmetric Encryption
9.6 Block Ciphers — AES

The AES operates in the binary extension field F28

This means that the elements of the field are polynomials over
F2 (Z2) with degree equal or smaller than 7

Using these polynomials, one can add and multiply field
elements

The multiplication operation must be specified in the
polynomial notation

It refers to the multiplication of two polynomials over Z2

modulo an irreducible polynomial of degree 8

In the case of the AES, this polynomial is

f (x) = x8 + x4 + x3 + x + 1
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9. Symmetric Encryption
9.6 Block Ciphers — AES

Mathematically speaking, Z2[x ]f (x) is a field if f (x) is an
irreducible polynomial over Z2

In the case of AES, f (x) is an irreducible polynomial over Z2

with degree 8

It follows that Z2[x ]f (x) is a field, called AES field, that is
isomorphic to F28

Because it is a field, every nonzero element b(x) has a
multiplicative inverse element b−1(x)

As for any field, this element can be efficiently computed with
the extended Euclid algorithm
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9. Symmetric Encryption
9.6 Block Ciphers — AES

Internally, the AES operates on a two-dimensional array s of
bytes, called the State

The State consists of 4 rows and Nb columns (where Nb = 4
for all versions of the AES)

Each entry in the State refers to a byte sr ,c or s[r , c], where
0 ≤ r < 4 refers to the row and 0 ≤ c < 4 refers to the
column

The State can be viewed as a two-dimensional 4x4 array (or
matrix) of bytes or as a one-dimensional array of four 32-bit
words are equivalent
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9. Symmetric Encryption
9.6 Block Ciphers — AES

Input bytes

State array

Output bytes
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in0
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in

in

in

in

in
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in

in
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in
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1

2
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4

5

6

7

8

9
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s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

out

out

out
0

out

out

out

out

out

out

out

out

out

out

out

out

out

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0,0

1,0

2,0

3,0

0,1 0,2 0,3

1,1

2,1

3,1

1,2

2,2

1,3

2,3

3,33,2

Algorithm 9.5 The AES encryption algorithm

(in)

s = in
s = AddRoundKey(s,w [0,Nb − 1])
for r = 1 to (Nr − 1) do

s = SubBytes(s)
s = ShiftRows(s)
s = MixColumns(s)
s = AddRoundKey(s,w [rNb, (r + 1)Nb − 1])

s = SubBytes(s)
s = ShiftRows(s)
s = AddRoundKey(s,w [NrNb, (Nr + 1)Nb − 1])
out = s

(out)
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9. Symmetric Encryption
9.6 Block Ciphers — AES

The SubBytes() transformation stands for a substitution
cipher in which each byte sr ,c of the State is replaced with
another byte s ′r ,c from a substitution table (S-box)

The substitution cipher defined by the AES’ S-box is bijective
(one-to-one) and nonlinear (i.e., SubBytes(s) + SubBytes(s’)
6= SubBytes(s + s’) for two states s and s ′)

The S-box is the only nonlinear component of the AES

As such, it is important from a security viewpoint
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9. Symmetric Encryption
9.6 Block Ciphers — AES

The ShiftRows() transformation cyclically shifts (or rotates)
the bytes in each row of the State
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s

s

s

s

s

s
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s

s
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s
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s
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s

s

s
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s
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9. Symmetric Encryption
9.6 Block Ciphers — AES

The MixColumns() transformation operates on each column
of the State individually, and it subjects each column to a
linear transformation

When the MixColumns() transformation operates on column c
(0 ≤ c < 4), it considers the 4 bytes s0,c , s1,c , s2,c , and s3,c of
the State simultaneously
The transformation is defined as follows:

s′0,c
s′1,c
s′2,c
s′3,c

 =


0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

 ·


s0,c
s1,c
s2,c
s3,c


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9. Symmetric Encryption
9.6 Block Ciphers — AES

In the AddRoundKey() transformation, a word of the key
schedule w is added modulo 2 to each column of the State

This means that

[s ′0,c , s
′
1,c , s

′
2,c , s

′
3,c ] = [s0,c , s1,c , s2,c , s3,c ]⊕ w [rNb + c]

for 0 ≤ c < Nb and 0 ≤ r ≤ Nr

There is a unique key expansion algorithm (not addressed
here)

cbd Rolf Oppliger 106

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 9 – Symmetric Encryption

9. Symmetric Encryption
9.6 Block Ciphers — AES

Algorithm 9.7 The AES decryption algorithm

(in)

s = in
s = AddRoundKey(s,w [NrNb, (Nr + 1)Nb − 1])
for r = Nr − 1 downto 1 do

s = AddRoundKey(s,w [rNb, (r + 1)Nb − 1])
s = InvMixColumns(s)
s = InvShiftRows(s)
s = InvSubBytes(s)

s = AddRoundKey(s,w [0,Nb − 1])
s = InvShiftRows(s)
s = InvSubBytes(s)
out = s

(out)
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9. Symmetric Encryption
9.6 Block Ciphers — AES

In 2003, the NSA approved the AES to become a legitimate
cipher to encrypt classified information

“The design and strength of all key lengths of the AES algorithm (i.e.,
128, 192 and 256) are sufficient to protect classified information up to the
SECRET level. TOP SECRET information will require use of either the
192 or 256 key lengths.”

[ . . . ]

“The implementation of AES in products intended to protect national se-
curity systems and/or information must be reviewed and certified by NSA
prior to their acquisition and use.”
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9. Symmetric Encryption
9.6 Block Ciphers — AES

This announcement marks the first time that the public has
access to a cipher approved by NSA for the encryption of
information classified as TOP SECRET (at least, if the
longer-key versions of the AES are used).

Unfortunately, one doesn’t know what the NSA currently
knows about the security of the AES

Outside the NSA, the AES has been subject to a lot of public
scrutiny

Even after two decades of cryptanalytical research, nobody
has found a vulnerability that can be turned into a practical
attack against the AES
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9. Symmetric Encryption
9.7 Modes of Operation

If one wants to encrypt long messages, then one needs a block
cipher and an appropriate mode of operation

Historically, the most important document was FIPS PUB 81
published by NIST in 1980

The document specifies four modes of operation (for DES)

Electronic code book (ECB)
Cipherblock chaining (CBC)
Output feedback (OFB)
Cipher feedback (CFB)

In 2001, NIST added counter (CTR) mode
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9. Symmetric Encryption
9.7 Modes of Operation

All 5 modes are confidentiality modes, i.e., they protect (only)
the confidentiality of messages

They neither provide the authenticity nor the integrity of
messages

Meanwhile, cryptography has come up with modes of
operation that provide support for AE and AEAD

They have become very important in the field (→ Chapter 11)
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9. Symmetric Encryption
9.7 Modes of Operation — ECB

The ECB mode is the simplest and most straightforward mode
of operation for a block cipher (it should no longer be used)
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9. Symmetric Encryption
9.7 Modes of Operation — ECB

c© https://en.wikipedia.org/wiki/Block cipher mode of operation#Electronic codebook (ECB)
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9. Symmetric Encryption
9.7 Modes of Operation — CBC

The CBC mode of operation is often used to overcome the
most important disadvantages of ECB

The encryption of a plaintext message block mi not only
depends on mi and k , but also on the previous ciphertext
block ci−1 (or the IV in case of m1)

This means that the ciphertext blocks are cryptographically
chained

The use of an IV turns the encryption function into a
probabilistic one

The IV need not be kept secret, but it must be unpredictable
(e.g., BEAST attack)
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9. Symmetric Encryption
9.7 Modes of Operation — CBC

Encryption function:

c0 = IV

ci = Ek(mi ⊕ ci−1) for 1 ≤ i ≤ t
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9. Symmetric Encryption
9.7 Modes of Operation — CBC

Decryption function:

c0 = IV

mi = Dk(ci )⊕ ci−1 for 1 ≤ i ≤ t
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9. Symmetric Encryption
9.7 Modes of Operation — CBC

The correctness of the decryption follows from

Dk(ci )⊕ ci−1 = Dk(Ek(mi ⊕ ci−1))⊕ ci−1

= mi ⊕ ci−1 ⊕ ci−1

= mi

Due to the IV, there is a message expansion of one block
(plus padding)

Variants of “normal” CBC

CBC with ciphertext stealing
Propagating CBC (PCBC) — similar to Infinite Garble
Extension (IGE) used in Telegram

cbd Rolf Oppliger 117

Cryptography 101: From Theory to Practice

https://creativecommons.org/licenses/by-nd/4.0/
https://rolf.esecurity.ch


Chapter 9 – Symmetric Encryption

9. Symmetric Encryption
9.7 Modes of Operation — CFB

CFB turns a block cipher into a (self-synchronizing) stream
cipher
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9. Symmetric Encryption
9.7 Modes of Operation — CFB

OFB mode is similar to CFB, but it yields a synchronous
stream cipher

In contrast to CFB, the key stream can be precomputed
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9. Symmetric Encryption
9.7 Modes of Operation — CTR

CTR mode is similar to OFB, but it has a random access
property that makes it suited for multiprocessor machines,
where blocks can be encrypted and decrypted in parallel
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9. Symmetric Encryption
9.8 Final Remarks

DES (3DES) and RC4 are deprecated

AES, Salsa20, and ChaCha20 are still in widespread use

There are many other ciphers, e.g., the AES finalists, IDEA,
FOX (IDEA-NXT), CAST, MISTY1, Camellia, SHACAL, . . .

All ciphers in use today look similar, i.e., they all employ a
mixture of more or less complex functions that are iterated
multiple times (i.e., in multiple rounds)

The result is inherently hard to understand and (crypt)analyze
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9. Symmetric Encryption
9.8 Final Remarks

One may get the impression that it is simple to design and
come up with a new cipher

Unfortunately, this is not the case, and the design of a system
that is secure and efficient is tricky

Many ciphers had been proposed, implemented, and deployed,
before a formerly unknown attack was discovered and applied
to break them

For example, the discovery of differential cryptanalysis
brought the end to the Fast Data Encipherment Algorithm
(FEAL) and many variants
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9. Symmetric Encryption
9.8 Final Remarks

Unless one enters the field of information-theoretical security,
the level of security a cipher provides is difficult to determine

Some cryptanalytical attacks are yet unknown and will be
discovered in the future (probably)

In this situation, it is simple to put in place and distribute
rumors about possible weaknesses and vulnerabilities of
particular ciphers

This also applies to the influence and the cryptanalytical
capabilities of NSAs
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Questions and Answers
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Thank you for your attention
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