
PREPRIN
T 

Do n
ot 

dis
trib

ute

220 Cryptography 101: From Theory to Practice

9.5.2.2 Salsa20

Salsa2021 is an additive stream cipher—or rather a family of additive stream
ciphers—that follows the design principle mentioned above. It was originally de-
veloped by Dan Bernstein and submitted to the eSTREAM project in 2005. Since
then, it has been widely used in many Internet security protocols and applications.
Its major advantages are simplicity and efficiency both in hardware or software im-
plementations. In a typical software implementation, for example, the throughput of
Salsa20 is about five times bigger than the throughput of RC4 that is already a fast
stream cipher. As mentioned before, Salsa20 uses nonces, and it is therefore less
important to periodically refresh the key. As of this writing, there are no published
attacks against Salsa20/20 and Salsa20/12, i.e., the reduced-roundversion of Salsa20
with only 12 rounds. The best known attack is able to break Salsa20/8, i.e., the
reduced-round version of Salsa20 with 8 rounds, but this attack is more theoretically
interesting than practical.

Salsa20 operates on 64-byte (or 512-bit) blocks of data, meaning that a
plaintext or ciphertext unit that is processed in one step is 64 bytes long.22 Referring
to formula (9.5), the encryption function of Salsa20 can be expressed as follows:

c = Ek(m,n) = Salsa20encryptk (m,n) = m⊕ Salsa20expandk (n)

In this expression,Salsa20encrypt refers to the encryption function of Salsa20,
whereasSalsa20expand refers to its expansion function. Both functions are keyed
with k (that is typically 32 bytes long) and employ an 8-byte noncen.23 For the sake
of simplicity, we don’t distinguish between the Salsa20 encryption and expansion
functions, and we use the term Salsa20 to refer to either of them (from the context it
is almost always clear whether the encryption or expansion function is referred to).
In addition to the Salsa20 encryption function and expansion functions, there is also
a Salsa20 hash function that takes a 64-byte argumentx and hashes it to a 64-byte
output valueSalsa20(x). So the Salsa20 hash function does neither compress nor
expand the argument, but it can still be thought of as being a cryptographic hash
function, i.e., a function that has the same properties as a “normal” cryptographic
hash function, such as pseudorandomness. We introduce the Salsa20 hash, expan-
sion, and encryption functions in this order next.

21 https://cr.yp.to/salsa20.html.
22 In spite of this relatively large unit length, Salsa20 is still considered to be a stream cipher (and not

a block cipher).
23 As explained below,Salsa20expand

k (n) refers to the iterated application of the Salsa20 expansion
function. In each iteration, the 8-byte noncen is concatenated with an 8-byte sequence numberi. It
is iterated as many times as required until a sufficiently long key stream is generated.

(c) This extract is taken from a preprint of Rolf Oppliger's upcoming
book entitled "Cryptography 101: From Theory to Practice" that will
be published by Artech House in 2021.



PREPRIN
T 

Do n
ot 

dis
trib

ute

Symmetric Encryption 221

Hash Function

The Salsa20 hash function is word-oriented, meaning that it operates on words,
referring to 4-byte or 32-bit values. It employs three basic operations on words:

• The addition modulo232 of two wordsw1 andw2, denoted asw1 + w2.

• The addition modulo 2 (XOR) ofw1 andw2, denoted asw1 ⊕ w2

• Thec-bit left rotation of wordw, denoted asw
y←֓ c for some integerc ≥ 0.24

For example, 0x77777777 + 0x01234567 = 0x789ABCDE, 0x01020304⊕
0x789ABCDE = 0x7998BFDA, and 0x7998BFDA

y←֓ 7 = 0111 1001 1001 1000
1011 1111 1101 1010

y←֓ 7 = 1100 1100 0101 1111 1110 1101 0011 1100 =
0xCC5FED3C. Mainly for performance reasons, the Salsa20 hash function only
uses constant values forc (in the left rotation operation) and invokes neither word
multiplications nor table lookups.

The Salsa20 hash function employs the three basic operations as building
blocks in the following auxiliary functions:

• Let y be a 4-word value that consists of the 4 wordsy0, y1, y2, and y3,
i.e., y = (y0, y1, y2, y3). This means thaty is 4 · 32 = 128 bits long. The
quarterround function is defined asquarterround(y) = z = (z0, z1, z2, z3),
where

z1 = y1 ⊕ ((y0 + y3)
y←֓ 7)

z2 = y2 ⊕ ((z1 + y0)
y←֓ 9)

z3 = y3 ⊕ ((z2 + z1)
y←֓ 13)

z0 = y0 ⊕ ((z3 + z2)
y←֓ 18)

The quarterround function modifies the 4 words ofy in place, i.e.,y1 is
changed toz1, y2 is changed toz2, y3 is changed toz3, andy0 is finally
changed toz0. It is called “quarterround function,” because it operates only
on 4 words, whereas Salsa20 operates on 16 words (note that 4 is a quarter of
16).

24 Note that there is a subtle difference between ac-bit left rotation of wordw, denoted asw
y←֓ c (in

this book), and ac-bit left shift of wordw, denoted asw ←֓ c. While the first operator (
y←֓ ) means

that the bits are rotated, meaning that the bits that fall out of the word on the left side are reinserted on
the right side, this is not true for the second operator (←֓ ). Here, zero bits are reinserted on the right
side, and the bits that fall out of the word on the left side are lost. The same line of argumentation

and notation apply to thec-bit right rotation of wordw, denoted asw
x→֒ c, and thec-bit right shift

of w, denoted asw →֒ c.



PREPRIN
T 

Do n
ot 

dis
trib

ute

222 Cryptography 101: From Theory to Practice

• Let y be a 16-word value(y0, y1, y2, . . . , y15) that can be represented as a
square matrix







y0 y1 y2 y3
y4 y5 y6 y7
y8 y9 y10 y11
y12 y13 y14 y15







The rowround function takesy as input and modifies the rows of the matrix in
parallel using the quarterround function mentioned above. More specifically, it
generates a 16-word output valuez = rowround(y) = (z0, z1, z2, . . . , z15),
where

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3)

(z5, z6, z7, z4) = quarterround(y5, y6, y7, y4)

(z10, z11, z8, z9) = quarterround(y10, y11, y8, y9)

(z15, z12, z13, z14) = quarterround(y15, y12, y13, y14)

This means that each row is processed individually (and independently from
the other rows), and that the four words of each row are permuted in a specific
way. In fact, the words of rowi (for 1 ≤ i ≤ 4) are rotated left fori − 1
positions. This means that the words of the first row are not permuted at all,
the words of the second row are rotated left for one position, the words of the
third row are rotated left for two positions, and the words of the fourth row are
rotated left for three position before the quarterround function is applied.

• Similar to the rowround function, the columnround function takes a 16-
word value(y0, y1, y2, . . . , y15) and generates a 16-word output according
to z = columnround(y) = (z0, z1, z2, . . . , z15), where

(z0, z4, z8, z12) = quarterround(y0, y4, y8, y12)

(z5, z9, z13, z1) = quarterround(y5, y9, y13, y1)

(z10, z14, z2, z6) = quarterround(y10, y14, y2, y6)

(z15, z3, z7, z11) = quarterround(y15, y3, y7, y11)

The columnround function is somehow the transpose of the rowround func-
tion, i.e., it modifies the columns of the matrix in parallel by feeding a permu-
tation of each column through the quarterround function.

• The rowround and columnround functions can be combined in a doubleround
function. More specifically, the doubleround function is a columnround func-
tion followed by a rowround function. As such, it takes a 16-word sequence



PREPRIN
T 

Do n
ot 

dis
trib

ute

Symmetric Encryption 223

as input and outputs another 16-word sequence. Ify = (y0, y1, y2, . . . , y15) is
the input, then

z = (z0, z1, z2, . . . , z15)

= doubleround(y)

= rowround(columnround(y))

is the respective output. This means that the doubleround function first mod-
ifies the input’s columns in parallel, and then modifies the rows in parallel.
This, in turn, means that each word is modified twice.

• Finally, the littleendian function encodes a word or 4-byte sequenceb =
(b0, b1, b2, b3) in little-endian order(b3, b2, b1, b0) that represents the value
b3 · 224 + b2 · 216 + b1 · 28 + b0. This value, in turn, is typically writ-
ten in hexadecimal notation. For example,littleendian(86, 75, 30, 9) =
(9, 30, 75, 86) represents9 · 224 + 30 · 216 + 75 · 28 + 86 that can be written
as 0x091E4B56. Needless to say that the littlendian function can be inverted,
so littleendian−1(0x091E4B56) = (86, 75, 30, 9).

Putting everything together, the Salsa20 hash function takes a 64-byte se-
quencex = (x[0], x[1], . . . , x[63]) as input and generates another 64-byte sequence
Salsa20(x) = x + doubleround10(x) as output. The input sequencex consists of
16 words in littleendian form:

x0 = littlendian(x[0], x[1], x[2], x[3])

x1 = littlendian(x[4], x[5], x[6], x[7])

. . .

x15 = littlendian(x[60], x[61], x[62], x[63])

If z = (z0, z1, z2, . . . , z15) = doubleround10(x0, x1, . . . , x15), then the output of
the hash functionSalsa20(x) is the concatenation of the 16 words that are generated
as follows:

littlendian−1(z0 + x0)

littlendian−1(z1 + x1)

. . .

littlendian−1(z15 + x15)

The 20 rounds of Salsa20 come from the fact that the doubleround function is
iterated 10 times, and each iteration basically represents two rounds, one standing
for the columnround function and one standing for the rowround function.



PREPRIN
T 

Do n
ot 

dis
trib

ute

224 Cryptography 101: From Theory to Practice

Expansion Function

As its name suggests, the aim of the Salsa20 expansion function is to expand a 16-
byte inputn into a 64-byte output, using 32 or 16 bytes of keying material and 16
constant bytes. Depending on whether the keying material consists of 32 or 16 bytes,
the constant bytes and the respective expansion functions are slightly different.

If the keying material consists of 32 bytes, then this material is split into two
halves that represent two 16-bytes keysk0 andk1. In this case, the constant bytes
look as follows (where eachσ value consists of four bytes that are encoded using
the littleendian function):

σ0 = (101, 120, 112, 97) = 0x61707865

σ1 = (110, 100, 32, 51) = 0x3320646E

σ2 = (50, 45, 98, 121) = 0x79622D32

σ3 = (116, 101, 32, 107) = 0x6B206574

The Salsa20 expansion function is then defined as follows:

Salsa20k0,k1(n) = Salsa20(σ0, k0, σ1, n, σ2, k1, σ3)

Note thatlittleendian(σ0) = littleendian(101, 120, 112, 97) = 0x61707865, so
the argument that is subject to the Salsa20 hash function starts with the four bytes
0x61, 0x70, 0x78, and 0x65.

Otherwise, i.e., if the keying material consists of 16 bytes, then this material
represents a single 16-byte keyk that is applied twice. In this case, a slightly different
set of 4-byteτ constants is used

τ0 = (101, 120, 112, 97)

τ1 = (110, 100, 32, 49)

τ2 = (54, 45, 98, 121)

τ3 = (116, 101, 32, 107)

where the two bytes that are different from the respectiveσ constants are marked as
underlined. In this case, the Salsa20 expansion function is defined as

Salsa20k(n) = Salsa20(τ0, k, τ1, n, τ2, k, τ3).

In either case,σ andτ can be seen as constantsc, k is the key, andn is the argument
of the Salsa20 expansion function. Hence, the input to the function can be written in



PREPRIN
T 

Do n
ot 

dis
trib

ute

Symmetric Encryption 225

a specific matrix layout:







c k k k
k c n n
n n c k
k k k c







Obviously, this layout is somehow arbitrary and can be changed at will. As explained
later, ChaCha20 is a variant of Salsa20 that uses a different matrix layout.

Encryption Function

Salsa20 is an additive stream cipher, meaning that an appropriately sized key stream
is generated and added modulo 2 to the plaintext message. The Salsa20 expansion
function is used to generate the key stream. More specifically, letk be a 32- or 16-
byte key,25 n an 8-byte nonce, andm anl-byte plaintext message that is going to be
encrypted (where0 ≤ l ≤ 270). The Salsa20 encryption ofm with noncen under
key k is denoted asSalsa20k(m,n). It is computed asm ⊕ Salsa20k(n′), where
Salsa20k(n

′) represents a key stream that can be up to270 bytes long andn′ is
derived fromn by adding a counter. Hence, the key stream is iteratively constructed
as follows:

Salsa20k(n, 0) ‖ Salsa20k(n, 1) ‖ . . . ‖ Salsa20k(n, 264 − 1)

In each iteration, the Salsa20 expansion function is keyed withk and applied to
a 16-byte input that consists of the 8-byte nonce and an 8-byte counteri. If i is
written bitwise, i.e.,i = (i0, i1, . . . , i7), then the respective counter is standing for
i0 + 28i1 + 216i2 + . . . + 256i7. Each iteration of the Salsa20 expansion function
yields64 = 26 bytes, so the maximal length of the key stream that can be generated
this way is264 · 26 = 264+6 = 270 bytes. It goes without saying that only as many
bytes as necessary are generated to encrypt thel bytes of the messagem. The bottom
line is that the Salsa20 encryption function can be expressed as

c = (c[0], c[1], . . . , c[l − 1]) = (m[0],m[1], . . . ,m[l− 1])⊕ Salsa20k(n′)

or

c[i] = m[i]⊕ Salsak(n, ⌊i/64⌋)[i mod 64]

25 Consider the possibility of using a 16-byte key as an option. The preferred key size is 32 bytes
referring to 256 bits.



PREPRIN
T 

Do n
ot 

dis
trib

ute

226 Cryptography 101: From Theory to Practice

for i = 0, 1, . . . , l − 1. Since Salsa20 is an additive stream cipher, the encryption
and decryption functions are essentially the same (withm and c having opposite
meanings).

Because the length of a nonce is controversially disucussed in the community,
Bernstein proposed is variant of Salsa20 that can handle longer nonces. More
specifically,XSalsa2026 can take nonces that are 192 bits long (instead of 64 bits)
without reducing the claimed security.

9.5.2.3 ChaCha20

In 2008, Bernstein proposed a modified version of the Salsa20 stream cipher named
ChaCha20[10].27 Again, the term refers to a family of stream ciphers that comprises
ChaCha20/20 (20 rounds), ChaCha20/12 (12 rounds), and ChaCha20/8 (8 rounds).
ChaCha20 is structurally identical to Salsa20, but it uses a different round function
and a different matrix layout. Also, it uses a key that is always 32 bytes (256 bits)
long, a nonce that is 12 bytes (96 bits) long, and a block counter that is only
4 bytes (32 bits) long. Remember that Salsa20 nonces and block counters are 8
bytes long each. Furthermore, the ChaCha20 specification also uses another notation
to describe the quarterround function. Instead of usingy = (y0, y1, y2, y3) and
z = (z0, z1, z2, z3), it uses four 32-bit wordsa, b, c, andd. This means that

z1 = y1 ⊕ ((y0 + y3)
y←֓ 7)

z2 = y2 ⊕ ((z1 + y0)
y←֓ 9)

z3 = y3 ⊕ ((z2 + z1)
y←֓ 13)

z0 = y0 ⊕ ((z3 + z2)
y←֓ 18)

can also be written as

b = b ⊕ ((a+ d)
y←֓ 7)

c = c⊕ ((b + a)
y←֓ 9)

d = d⊕ ((c+ b)
y←֓ 13)

a = a⊕ ((d+ c)
y←֓ 18)

The operations performed by ChaCha20 are the same as the ones performed by
Salsa20, but they are applied in a different order and each word is updated twice

26 https://cr.yp.to/snuffle/xsalsa-20081128.pdf.
27 https://cr.yp.to/chacha/chacha-20080128.pdf



PREPRIN
T

Do n
ot 

dis
trib

ute

Symmetric Encryption 227

instead of just once. The advantage is that the Chacha20 round function provides
more diffusion than the Salsa20 round function. Also, the rotation distances are
changed from 7, 9, 13, and 18 to 16, 12, 8, and 7, but this difference is less important.
The ChaCha20 quarterround function updatesa, b, c, andd as follows:

a = a+ b; d = d⊕ a; d = d
y←֓ 16;

c = c+ d; b = b⊕ c; b = b
y←֓ 12;

a = a+ b; d = d⊕ a; d = d
y←֓ 8;

c = c+ d; b = b⊕ c; b = b
y←֓ 7;

Like Salsa20, ChaCha20 is an additive stream cipher, meaning that it pseudo-
randomly generates a key stream that is then added modulo 2 to encrypt or decrypt
a message. Hence, it is characterized by the PRG that is inherent in the design. The
ChaCha20 PRG is overviewed in Algorithm 9.3. It operates on a(4 × 4)-matrix
S of 4-byte words called the state. Hence, the state is exactly 64 bytes long. The
ChaCha20 PRG takes as input a 32-byte keyk, a 4-byte block counteri, and a
12-byte noncen, and it generates as output a serialized version of the state. The
respective bits are then added modulo 2 to the plaintext message (for encryption) or
ciphertext (for decryption).

Algorithm 9.3 The ChaCha20 PRG algorithm.

(k, i, n)

S = σ ‖ k ‖ i ‖ n
S′ = S
for i = 1 to 10 do begin

quarterround(S′
0, S

′
4, S

′
8, S

′
12)

quarterround(S′
1, S

′
5, S

′
9, S

′
13)

quarterround(S′
2, S

′
6, S

′
10, S

′
14)

quarterround(S′
3, S

′
7, S

′
11, S

′
15)

quarterround(S′
0, S

′
5, S

′
10, S

′
15)

quarterround(S′
1, S

′
6, S

′
11, S

′
12)

quarterround(S′
2, S

′
7, S

′
8, S

′
13)

quarterround(S′
3, S

′
4, S

′
9, S

′
14)

end
S = S + S′

Serialized(S)

In step one of the ChaCha20 PRG algorithm,S is constructed as the concate-
nation of the 4 constantsσ0, σ1, σ2, andσ3 that are the same as the ones defined
for Salsa20,k, i, andn. So the 48 bytes fromk, i, andn are complemented with 16



PREPRIN
T

Do n
ot 

dis
trib

ute

228 Cryptography 101: From Theory to Practice

constant bytes, and hence the total size of the state is 64 bytes. With regard to the
matrix layout mentioned above, ChaCha20 uses the following (simplified) layout:







c c c c
k k k k
k k k k
n n n n







The first row comprises the constantsσ, the second and third rows comprise the key
k, and the fourth row comprises the noncen. To be precise, the nonce consists of a
4-byte block counteri and a 12-byte valuen that represents the actual nonce.28

In step two of the ChaCha20 PRG algorithm, the stateS is copied to the
working stateS′. This is the value that is processed iteratively in 10 rounds. In each
round, the quarterround function is applied 8 times, where the first 4 applications
refer to “column rounds” and the second 4 applications refer to “diagonal rounds”
(remember that Salsa20 uses column and row rounds, but no diagonal rounds).
Diagonal rounds are new in the ChaCha20 design, and they stand for themselves.
10 rounds with 8 applications of the quarterround function each yield10 · 8/4 = 20
rounds. In the end, the original content of the stateS is added modulo232 to S′,
and the result (in serialized form) refers to the 64-byte output of the ChaCha20
PRG algorithm. Serialization, in turn, is done by subjecting the words ofS to the
littleendian function and sequencing the resulting bytes. If, for example, the state
begins with the two words 0x091E4B56 and 0xE4E7F110, then the output sequence
begins with the 8 bytes 0x56, 0x4B, 0x1E, 0x09, 0x10, 0xF1, 0xE7, and 0xE4.

Similar to Salsa20, no practically relevant cryptanalytical attack against the
ChaCha20 stream cipher is known to exist. It is therefore widely used on the
Internet to replace RC4. Most importantly, it is often used with Bernstein’s Poly1305
message authentication code (Section 10.3.3) to provide authenticated encryption.

9.6 BLOCK CIPHERS

As mentioned before, every practical symmetric encryption system processes plain-
text messages unit by unit. In the case of a block cipher such a unit is called ablock.
Consequently, a block cipher maps plaintext message blocks of a specific length into
ciphertext blocks of typically the same length, i.e.,M = C = Σn for some alphabet
Σ and block lengthn (e.g., 128 bits).

In theory, a permutation on setS is just a bijective functionf : S → S
(Definition A.22). If we fix a block lengthn and work with the plaintext message

28 Note that the block counteri and the actual noncen sum up to 16 bytes.




